Study of of the *KNN* cluster at J-PARC

Takumi Yamaga (RIKEN) for the J-PARC E15/E80/P89 collaboration

WNCP2023 @ Osaka Univ. (2023.11.27–29)

Hadrons

Clustering in Nuclei / Hadrons

R. Dalitz and S. Tuan, Ann. Phys. (N.Y.) 10, 307 (1960). R. Dalitz, T. Wong, and G. Rajasekaran, Phys. Rev. 153,1617 (1967).

$\Lambda(1405)$ $I(J^P) = 0\left(\frac{1}{2}\right)$

Considered to be \overline{KN} cluster $(m_{\bar{K}} + m_N \sim 1.43 \text{ GeV}/c^2)$

 $\Lambda(1405)$

J. M. M. Hall et al., Phys. Rev. Lett. **114** (2015) 132002

How to experimentally determine the internal structure of exotic hadrons?

- Meson as a constituent
- Large binding energy
- Compact & Dense

$$I_{\bar{K}N} = 0 \quad \frac{1}{\sqrt{2}} \left(-K^- p + \bar{K}^0 n \right) \quad \begin{array}{l} \text{Strong} \\ \text{attractive} \end{array}$$

$$I_{\bar{K}N} = 1 \quad \frac{\bar{K}^0 p}{\frac{1}{\sqrt{2}} \left(K^- p + \bar{K}^0 n \right)} \quad \text{attractive}$$

KN interaction

Possible to make quasi-bound state with $I_{\bar{K}N} = 0$

Deuteron

The lightest \bar{K} -nucleus

The lightest \overline{K} -nucleus

Ground state

The lightest \overline{K} -nucleus

Volume 7, number 4 PHYSICS LETTERS POSSIBLE EXISTENCE OF \overline{K} NN BOUND STATES Y. NOGAMI National Research Council, Ottawa, Canada[†]

1 December 1963

Received 2 November 1963

The lightest *K*-nucleus

- No theoretical study doubts the existence of $\bar{K}NN$, but predicted *BE* & Γ highly depend on model.
 - BE = 9 95 MeV $\Gamma = 16 110 \text{ MeV}$
 - L. Tolos & L. Fabbietti, Prog.Part.Nucl.Phys. 112 (2020) 103770

We conducted an experimental search for *KNN* @ J-PARC (E15 experiment)

Λ hypernuclei

\bar{K} nuclei

Production of *K***-nuclei**

(K^-, N) elementary cross sections @ $\theta_N = 0^\circ$

Inclusive measurement

Exclusive measurement

Purity of the Λpn final state ~ 80 %

Exclusive measurement $m_{\bar{K}} + 2m_N$ \overline{K}_{OF} -forward Mass of 1.2 having $q_{\Lambda p}$ (GeV/c) momentum qat rest $= \sqrt{4m_N^2 + m_{\bar{K}}^2 + 4m_N\sqrt{m_{\bar{K}}^2 + q^2}}$ 0.4 Quasi-free \bar{K} absorption 0.2 d^{2} (nb, 2.3 2.4 2.5 2.6 2.7 2.9 2.2 2.8 2.1 $m_{\Lambda p} \; ({\rm GeV}/c^2)$

Exclusive measurement

KNN production 1.2 \mathcal{N} N*Ē***NN** ³He C 0.8 $f_{\bar{K}NN}(m_X, q_X) = \frac{\Gamma^2/4}{(m_X - M_X)^2 + \Gamma^2/4} \times g_{K^-pp}(q_X)$ 10/ 0.6 $q_{\Lambda p}$ q_X^{O} (GeV/c) 0.4 0.2 d^2 (ub/ (a) $\langle U \rangle$ (\mathbf{C}) bound state quasi-free 2.8 2.2 2.6 2.2 $0^{\underline{1}_{2,\underline{4}}} \xrightarrow{1} \xrightarrow{1} \xrightarrow{1}_{2,\underline{6}} m_{2}^{2} (\text{GeV}/2^{2}) 1$ 2.4 $m_X \,({\rm GeV}/c^2)$ 2.2 2.3

 $m_{\bar{K}} + 2m_N$

Theoretical calculation

T. Sekihara, E. Oset, and A. Ramos, JPSCP 26 (2019) 023009

Theoretical calculation supports that the observed peak is *KNN* signal.

Ongoing analysis for *K*-nuclei

How to **experimentally** determine the internal structure of \overline{K} -nuclei?

Future plan

>90% solid angle coverage

Neutron detection capability

Sensitivity for proton polarization

Construction has been started (Completed in 2025)

Construction has been started (Completed in 2025)

New programs for kaonic nuclei

$\bar{K}NN$ system J^P determination

- To confirm the existence more robustly
- Measuring $d\sigma/dq \& \alpha_{\Lambda p}$
- Search for $(\bar{K}NN)^{1/2,-1/2}$
- Isospin partner of observed $\bar{K}NN$
 - $\bar{K}NN \rightarrow \Lambda n$ decay

Decay branch

Mesonic $\pi\Lambda N, \pi\Sigma N$

Heavier system

 $\overline{K}NNN$ system Door to heavier system ${}^{4}\text{He}(K^{-}, N)$ reaction $K^{-}ppn - \overline{K}^{0}pnn$ (I=0)

 $\bar{K}NNNN$ systemExpected large B.E. & high density $^{6}Li(K^{-}, d)$ reaction $K^{-}-\alpha$ $\bar{K}^{0}-\alpha$

Collaborators

T. Yamaga,^{1,*} S. Ajimura,² H. Asano,¹ G. Beer,³ H. Bhang,⁴ M. Bragadireanu,⁵ P. Buehler,⁶ L. Busso,^{7,8} M. Cargnelli,⁶ S. Choi,⁴ C. Curceanu,⁹ S. Enomoto,¹⁴ H. Fujioka,¹⁵ Y. Fujiwara,¹² T. Fukuda,¹³ C. Guaraldo,⁹ T. Hashimoto,²⁰ R. S. Hayano,¹² T. Hiraiwa,² M. Iio,¹⁴ M. Iliescu,⁹ K. Inoue,² Y. Ishiguro,¹¹ T. Ishikawa,¹² S. Ishimoto,¹⁴ K. Itahashi,¹ M. Iwai,¹⁴ M. Iwasaki,^{1,†} K. Kanno,¹² K. Kato,¹¹ Y. Kato,¹ S. Kawasaki,¹⁰ P. Kienle,^{16,‡} H. Kou,¹⁵ Y. Ma,¹ J. Marton,⁶ Y. Matsuda,¹⁷ Y. Mizoi,¹³ O. Morra,⁷ T. Nagae,¹¹ H. Noumi,^{2,14} H. Ohnishi,²² S. Okada,²³ H. Outa,¹ K. Piscicchia,^{24,9} Y. Sada,²² A. Sakaguchi,¹⁰ F. Sakuma,¹ M. Sato,¹⁴ A. Scordo,⁹ M. Sekimoto,¹⁴ H. Shi,⁶ K. Shirotori,² D. Sirghi,^{9,5} F. Sirghi,^{9,5} S. Suzuki,¹⁴ T. Suzuki,¹² K. Tanida,²⁰ H. Tatsuno,²¹ M. Tokuda,¹⁵ D. Tomono,² A. Toyoda,¹⁴ K. Tsukada,¹⁸ O. Vazquez Doce,^{9,16} E. Widmann,⁶ T. Yamazaki,^{12,1} H. Yim,¹⁹ Q. Zhang,¹ and J. Zmeskal⁶ (J-PARC E15 Collaboration)

Are you interested in? Join us!

We observed the first clear signal of \overline{KNN} in J-PARC E15 100_{1} $0.3 < q_x \le 0.6 \; GeV/c$ $d\sigma/dm_X (nb/(MeV/c^2))$ $m_{\bar{K}} + 2m_N$ $\bar{K}NN \to \Lambda p$ $QF_{\Lambda p} + QF_{\Sigma^0 p}$ $-\bar{K}NN \rightarrow \Sigma^0 p$ $QF_{\Lambda n} + QF_{\Sigma^0 n} + QF_{\Sigma^- p}$ 2.2 $m_{\rm x}~({\rm GeV}/c^2)$

Thank you for your attention!

Summary

We would like to robustly confirm the existence of \overline{K} -nuclei 8 clarify their internal structure

