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K− +4 He → Λ + d + n

K̄NNN

K̄NNN

Outline
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• Exclusive measurement of all the final state particles in a wide q region 
•We have found a way to effectively observe a kaonic nucleus

“ ” in J-PARC E15K̄NN
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Need further investigation
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K-K-pp

•Λ(1405) state
−  qusi-bound state as considered? 

− Relation between  and  

•Further details of the  
− Spin and parity of the “K-pp” 
− Really compact and dense system?

•Heavier kaonic nuclei 
− Mass number dependence 

−  Interplay between  &  
−  Modification of clustering in core nuclei 

•Double kaonic nuclei? 
− Much compact and dense system?

�̄�𝑁
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K̄N NN

to establish kaonic nuclei



: Theoretical situaionK̄NNN
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Binding 
Energy

Width 
(mesonic-only)

AY: PRC65(2002)044005, PLB535(2002)70. 
WG: PRC79(2009)014001. 
BGL: PLB712(2012)132. 
OHHMH: PRC95(2017)065202.

Larger binding than  and similar width are predicted.K̄NN

I(Jp) = 0(
1
2

−
)

Not a complete list. sorry…



•Some experimental searches in 2000s. No conclusive result. 
•multi-N absorptions hide bound-state signals in Stop-K

: Experimental situaionK̄NNN
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BRIEF REPORTS PHYSICAL REVIEW C 76, 068202 (2007)

peak position of the pπ invariant mass (Mpπ ) agrees with the
known " mass, and the width of the " peak is as narrow as
10 MeV/c2 FWHM, which is fully consistent with the observed
1/β resolution on each detector arm. By the measurement, the
angular region of −1 ! cos θ"d ! −0.6 was covered, where
θ"d is the opening angle between " and d three-momenta
in the laboratory frame, and thus observed "d pairs are
back-to-back correlated. Because of the limited acceptance
of their momenta, only energetic d and " were detected.
Therefore, they are considered to be mainly produced in
nonmesonic final states,

(K−4He)atomic → " + d + n, (6)

→ %0("γ ) + d + n. (7)

The "dn and %0dn final states are separated from possible
contaminants, such as "/%0πdN , by reconstructing the
missing mass

MN∗ =
√

(pinit − p" − pd )2, (8)

where pinit, p", and pd are four-momenta of the initial
state K− + 4He at rest and the measured ones of " and d,
respectively. The distribution of the thus determined missing
mass MN∗ is shown in Fig. 2(b). The narrow peak structure at
∼940 MeV/c2 is due to a "dn final state, whereas a %0("γ )dn
final state causes the broad distribution peaked at
∼1020 MeV/c2. As expected, no event exists above mπ +
mN ≈ 1080 MeV/c2, where "πdN and %0πdN final states
should appear. Therefore, we selected the "dn final state by
the condition 920 ! MN∗ ! 960 (MeV/c2).

The correlation between the "d invariant mass (M"d )
and the total three-momentum (P"d ) from all "d events is
shown in Fig. 3, where its projections onto the horizontal
and vertical axes classified by the "dn and %0dn final
states are shown together. A simulated shape, evaluated by
uniformly generated "dn events in the three-body phase
space, taking the realistic experimental setup into account,
is overlaid on the M"d spectrum, normalized to the observed
number of "dn events. The M"d spectrum of "dn events,
which clearly deviates from the simulated one, consists of two
components. One is an asymmetric peak located just below
the m4He + mK− − mn mass threshold at 3282 MeV/c2, and
the other is a broad component from 3100 to ∼3220 MeV/c2.
The M"d resolution near the threshold, estimated from the
observed MN∗ distribution, is ∼8 MeV/c2 rms, which is
significantly smaller than the observed width of the peak
structure. Identifying P"d as the momentum of missing
neutron, the high-mass peak is correlated with neutrons in
the momentum range <∼250 MeV/c. Thus, we can interpret
this peak as the "d branch of the 3NA process,

K−“ppn”(n) → "d(n), (9)

where the missing n is a spectator of the reaction, inheriting its
original Fermi momentum distribution from 4He. The deuteron
in the final state could be either from an original d cluster in
4He participating in the reaction (“ppn” is actually “pd”, then)
or a product of coalescence after the absorption. The nature
of the broad lower mass component accompanying neutrons
with momenta higher than ∼250 MeV/c is very interesting but
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FIG. 3. A correlation diagram between the M"d and P"d , with
kinematical constraints for MN∗ = 920, 940, and 960 MeV/c2 over-
laid. On the projections, contributions of the "dn and %0dn events
are represented by black and gray lines, respectively. The phase-
space distribution is represented by a thin gray curve on the M"d

spectrum.

still unclear at this moment, and several explanations may be
possible.

The correlation between the momenta of the " and d of
the "dn events is shown in Fig. 4. Well-correlated high-
momentum "d pairs constitute the 3NA component at the
region of cos θ"d < −0.9, in which the momenta of d and "
widely distribute along kinematically allowed curves for given
M"d values, reflecting the original Fermi motion. However,
the lower invariant mass component is composed of relatively
slow-" and fast-d pairs, significantly different from the 3NA
component. A presumable interpretation of the observed lower
mass distribution with conventional processes might be a
sequence of a %n branch of 2NA process and successive %"
conversion,

K−“NN”(NN ) → %n(NN ), %(NN ) → "d. (10)

There are other possible candidates for conventional explana-
tions with two-step reaction mechanisms. One possible exotic
interpretation of the lower mass component is to assume the
3S+

T =0 production and its decay to "d. Another possibility
is the 2S0

T =1/2 production and its decay to "n. For both,

068202-3
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Preliminary result 
of the  searchK̄NNN
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Our approach
8

+ +
reaction

K- 3He “K-pp” (n)

pΛ

+ +
reaction

K- 4He “K-ppn” (n)

dΛ

J-PARC E15

J-PARC T77/E80

add one neutron

Use in-flight (K-,n) reaction, just as successful J-PARC E15
decay branch unknown

~1 GeV/c ~1 GeV/c
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•Λdn final states are identified with a good purity 
by considering kinematical & topological consistensies 

•~20% contamination from Σ0dn /Σ−dp

Λdn event selection 
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w/ vertex consistency cut 
w/ pipd missing mass cut 
final sample

Λ reconstruction

w/ vertex consistency cut 
w/ lambda mass cut 
final sample

Missing neutron ID
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only 3-day data!
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•Two disributions are quite similar

Preliminary result
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622 S. Ajimura et al. / Physics Letters B 789 (2019) 620–625

Fig. 1. a) 2D event distribution plot on the M (= IM!p ) and the momentum transfer q (q!p ) for the !pn final state. The M F (q) given in Eq. (2), the mass threshold M(Kpp), 
and the kinematical boundary for !pn final state, are plotted in the figure. The lower q boundary corresponds to θn = 0 (forward n), and the upper boundary corresponds to 
θn = π (backward n). The histograms of projection onto the M axis b), and onto q axis c) are also given together with the decompositions of the fit result.

tation. On the other hand, the distribution centroid of M above 
M(Kpp) depends on q, and the yield vanishes rapidly as a function 
of q. The centroid shifts to the heavier M side for the larger q, sug-
gesting its non-resonant feature, i.e. the propagator’s kinetic energy 
is converted to the relative kinetic energy between ! and p, near 
the lower q boundary. Thus, the most natural interpretation would 
be non-resonant absorption of quasi-free ‘K ’ by the ‘N N ’ spectator 
(QFKA) due to the final state interaction (FSI). This process can be 
understood as a part of the quasi-free K reaction, in which most 
K s escape from the nucleus, as we published in [21]. Note that 
there is another change in event distributions at M(Kpp), i.e., the 
event density is low close to the θn = 0 line below M(Kpp), while 
it is high above M(Kpp) (this point will be separately discussed in 
the last section).

This spectral substructure is in relatively good agreement with 
that of Sekihara–Oset–Ramos’s spectroscopic function [23] to ac-
count for the observed structure in [22]. Actually, their spectrum 
has two structures, namely A) a “K −pp” pole below the mass 
threshold M(Kpp) (meson bound state), and B) a QFKA process 
above the M(Kpp). Thus, the interpretation of the internal sub-
structures near M(Kpp) is consistent with their theoretical picture.

3. Fitting procedure

We first describe what we can expect if point-like reactions 
happen between an incoming K − and 3He, which goes to a !pn
final state. The events must distribute simply according to the !pn
Lorentz-invariant phase space ρ3(M, q), as shown in Fig. 2a. We 
fully simulated these events based on our experimental setup and 
analyzed the simulated events by the common analyzer applied 
to the experimental data. The result is shown in Fig. 2b, which 
is simply E(M, q) × ρ3(M, q), where E(M, q) is the experimen-
tal efficiency. One can evaluate E(M, q) by dividing Fig. 2b by 
Fig. 2a bin-by-bin, which is given in Fig. 2c. As shown in Fig. 2c, 
we have sufficient and smooth experimental efficiency at the re-
gion of interest, M ≈ M(Kpp) at lower q, based on the careful 
design of the experimental setup. On the other hand, the efficiency 

is rather low at the dark blue region and even less toward the 
kinematical boundary, as shown in Fig. 2c. If we simply apply the 
acceptance correction, the statistical errors of those bins become 
huge and very asymmetric. This fact makes the acceptance correc-
tion of the entire (M, q) region unrealistic. Therefore, we applied 
a reverse procedure, i.e., we prepared smooth functions f{ j}(M, q)

(to account for the j-th physical process) and multiplied that with 
E(M, q) × ρ3(M, q) (= Fig. 2b) bin-by-bin. In this manner, one 
can reliably estimate how the physics process should be observed 
in our experimental setup, and this permitted us to calculate the 
mean-event-number expected in each 2D bin. The three introduced 
model functions (at the best fit parameter set) are shown in Fig. 3.

A very important and striking structure exists below M(Kpp), 
which could be assigned as the “K − pp” signal. To make the fitting 
function as simple as possible, let us examine the event distri-
bution by using the same function as was applied in [22], i.e., a 
product of B.W. depending only on M , and an S-wave harmonic-
oscillator form-factor depending only on q as:

f{Kpp} = CKpp
(
%Kpp/2

)2

(
M − MKpp

)2 +
(
%Kpp/2

)2 exp

(

−
(

q
Q Kpp

)2
)

, (1)

where MKpp and %Kpp are the B.W. pole position and the width, 
Q Kpp is the reaction form-factor parameter, and CKpp is the nor-
malization constant, as shown in Fig. 3a.

A model-function of the QFKA channel, f{Q F KA} (M, q), is intro-
duced as follows. As described, we assume that a ‘K ’ propagates 
between the two successive reactions. It consists of 1) K −N →
‘K ’N and 2) non-resonant ‘K ’ + ‘N N ’ → ! + p in the FSI. When the 
‘K ’ propagates at momentum q as an on-shell particle in the spec-
tator’s rest frame (≡ laboratory-frame), then the resulting invariant 
mass M (≡ I M!p(‘K + N N ’)) can be given as:

M F (q) =
√

4m2
N + m2

K + 4mN

√
m2

K + q2, (2)

E15: Λp ( ∼ 42 × 109 K−) T77: Λd ( ∼ 6 × 109 K−)

PLB789(2019)620

before acceptance correction

M(Kpp) M(Kppn)

preliminary



• From E15 functions, simply shift the mass by 1 nucleon mass 
• Shapes of the “quasi-free” and “broad” distributions are fixed by E15 results. 

Model functions 
11

from T. Yamaga’s slide



Preliminary result
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Preliminary result
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• The binding energy is compatible with some theoretical predictions 

• “ ” system might have larger binding than “ ”, although we 
expect a large systematic error 10~20 MeV. 

• Expereimental width is larger than theoretical predictions. 

K̄NNN K̄NN

Preliminary result
14

Binding 
Energy Width

T77 preliminary



• The isospin of the observed state is uniquely assinged as  
from the its decay to , but how about spin-parity? 

• JP=1/2-  assuming all the consistuents are in S-wave 
 

•  possibility still remains 

• We need more data  

• to compare with  in E15 

• to study other decay mode: ,… 

• peak position, branching ratio,… 
• I=1 component could be contaminated 

• to study I=1 state via (K-, p) reaction

I = 0
Λ(I = 0) d(I = 0)

K̄NNN (I = 0, Jp = 1/2−)

Σ*NN (I = 0, Jp = 3/2+)

K̄NN

K̄NNN → Λpn, πΣd, πΣpn

Status on K̄NNN
15



Further experiment on  
(J-PARC E80)

K̄NNN



• x3 longer CDC: solid angle 59%→93% 
• 3-layer barrel NC: neutron efficiency 3%→15% 

J-PARC E80 with a new spectrometer
17



• large kinematical-region coverage & x2 acceptance

Acceptance for K− +4 He → Λd + n
18

M
(K

pp
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•We expect x40  eventsΛdn

Expected spectrum @ 90 kW x 3 weeks
19

M(K-ppn)
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•Z-vertex resolution ~7mm → ~1mm 
•x2 better momentum & mass resolution

Improvement in resolution with VFT
20
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•Resotluion would be improved ~40 MeV → ~ 25 MeV 

•We expect different structure in  (I=1) because  (I=0)mΣ0d K̄NNN → Λd

 separation might be possibleΛ/Σ0
21

Event selection for  final stateΛpn
8
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•> x10 acceptance compared with E15 setup 

•Still, one order of magnitude smaller compared with Λdn

Acceptance for K− +4 He → Λpn + n
22
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✓Clear peak would be observed for both modes 
✓Peak positions etc. should be carefully compared

Expected spectra
23

M(K-ppn) M(K-ppn)

K-+4HeΛd+n K-+4HeΛpn+n

BKppn ~ 40 MeV  
ΓKppn ~ 100 MeV

Qkppn ~ 400 MeV/c

@ 3 weeks, 90kW

σ(K-ppn)*Br ~ 5 µb 
σ(QF)            ~ 5 µb 
σ(BG)            ~ 10 µb



• If  is 2NA process, spectator momentum would 
reflect the system size. 

•However, we cannot detect low-momentum protons… 

K̄NNN → Λpn

Spacial information  decayK̄NNN → Λpn
24

P. Kienle et al. / Physics Letters B 632 (2006) 187–191 189

configuration. This state proceeds to J π = 0− continuum states
of Λ + p with L = 1 and S = 1 which result from the intrinsic-
parity difference betweenΛ∗(J π = 1/2−) and Λ(J π = 1/2+).
Then, the effective transition potential, which makes L and S

change by 1, is presented in the following form:

(13)v(#ξ) = V0(#σp − #σΛ)
#ξ
b
exp

{
−(ξ/b)2

}
.

The range b is estimated to be 1.0 fm from a three-body cal-
culation of the K−pp [1]. The effect of b value on the follow-
ing results was found to be small, and so we kept this value
throughout the numerical calculations. The matrix element of
the transition potential is calculated to be

V (kΛp) = V0
4√
3πb

(
1

2πa2

)3/4( 4πa2b2

4a2 + b2

)5/2

(14)× kΛp exp
{
− a2b2

4a2 + b2
k2Λp

}
.

It is to be noted that the spin–coordinate coupling factor in
Eq. (13) makes the momentum transfer appreciably larger com-
pared to a simple Gaussian potential case.
The theoretical formulation of Eq. (7) is given in the at-rest

center-of-mass frame of K−ppn. So, we introduce Lorentz-
invariant Dalitz’s variables, that is, partial invariant masses of
two decay products constructed with their measured energies
and momenta:

(15)X ≡ m2
12 =

[
(E1 + E2)

2 − ( #p1 + #p2)2c2
]
/c4,

(16)Y ≡ m2
23 =

[
(E2 + E3)

2 − ( #p2 + #p3)2c2
]
/c4.

The Dalitz domain is bounded by a curve with minimum and
maximum X and Y ; Xmin = (m1 + m2)

2, Xmax = (M − m3)
2,

Ymin = (m2+m3)
2 and Ymax = (M −m1)

2. In the rest frame of
K−ppn, X and Y are related to E3 and E1 as

(17)X = M2 + m2
3 − 2ME3/c

2,

(18)Y = M2 + m2
1 − 2ME1/c

2.

By employing Dalitz’s variables of X = m2
Λp and Y = m2

pn,
we obtain Dalitz density distributions as

(19)
d2D

dX dY
= NnormEΛEnEp(x0)G(X,Y ),

where G(X,Y ) is a structure-dependent function of X and Y

with x0 as an implicit variable. When a structureless object de-
cays via a zero-range s-wave interaction, G(X,Y ) is a constant
and yields homogeneous Dalitz densities. We consider the fol-
lowing two cases.

(i) [K−ppn]T =0Jπ=1/2− → Λ + p + n.
In the p-participant case,

G(1)(X,Y ) = k2Λp(x0)

(20)× exp
{
− 2a2b2

4a2 + b2
k2Λp(x0) − 3a2

2
k2n

}
.

In the n-participant case, we obtain a similar function
G(2)(X,Y ) by exchanging the roles of n and p in G(1)(X,Y ).

Thus,

(21)G(X,Y ) = 1
2
[
G(1)(X,Y ) + G(2)(X,Y )

]
.

(ii) [K−ppp]T =1Jπ=3/2+ → Λ + p + p.
This decay can be treated in a similar way, but an essential

modification is to use a p-state wave function for φ(#r), since
the nuclear core ppp has a configuration of (0s)2(0p3/2). The
structure function of Eq. (20) in the case of participant p is
changed to

G(1)(X,Y ) = k2nk
2
Λp(x0)

(22)× exp
{
− 2a2b2

4a2 + b2
k2Λp(x0) − 3a2

2
k2n

}
.

In the K−ppp case, the decay-proton distribution is the sum of
the participant and spectator processes.

3. Dalitz plots and partial invariant-mass spectra

Now we show the results of the numerical calculation. We
calculated the Dalitz densities by using Eqs. (19), (20), (21),
(22) for the two parent clusters. We paid particular attention
to the effect of the structure of the K̄ clusters, and examined
the two cases, namely, the “shrunk core” (11) and “normal
core” (12). For comparison of various cases we set the parent
masses to be the same, namely,M = 3115 MeV/c2.
Calculated Dalitz density distributions in three-dimensional

presentation are shown in Fig. 1 for K−ppn(T = 0) → Λ +
p + n and K−ppp(T = 1) → Λ + p + p with the “shrunk
core” and the “normal core”. Their variation over the Dalitz do-
main is seen to depend on the quantum numbers and the core
shrinkage. The ridges on the right-hand and left-hand sides cor-
respond to the “participant” proton and the “spectator” proton,

Fig. 1. Calculated density distributions in three-dimensional presentation of
Dalitz plots in the decay of ppnK−(T = 0) (upper) and pppK−(T = 1)
(lower) ofM = 3115 MeV/c2. Left: “shrunk core” and right: “normal core”.
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moves in the whole region of the nuclear system in order to
gain the energy from the strong K̄N interaction.

With the AY potential, the binding energy of the K̄NNN
system is about 30 MeV larger than the binding energies with
the Kyoto K̄N potential, and the decay width is ! ∼ 79 MeV.
The particle density distributions and the rms radii are similar
to those obtained with the Kyoto K̄N potential with Type
II, although there is about 30 MeV difference between the
binding energies with these two potentials. The tail of the wave
function is considered to be related to the binding energy, but
the central densities and rms radii are not determined only by
the binding energy. It is now clear that the deeply bound (B >
100 MeV in Refs. [6,7]) and high density (8.2 times the normal
density shown in Ref. [7]) K̄NNN state is not realized in the
accurate few-body calculation. Such an extreme result can be
regarded as an artifact due to the approximated treatment of the
few-body systems, e.g., the optical potential or the g-matrix
approach [6,7] which makes the NN repulsive core soft. A
detailed discussion on the effect of the NN repulsive core in the
light kaonic nuclei will be given in the following section V D.
We, however, emphasize that the existence of the bound state
is confirmed also with the realistic Kyoto K̄N interaction, and
the central density of nucleons can be about two times larger
than that in the 3He.

C. Structure of K̄ N N N N quasibound state

Next, we investigate the structure of the five-body systems,
strange tetrabaryon K̄NNNN systems with J π = 0−. We find
isospin-doublet quasibound states in the K−pppn-K̄0ppnn
(≡ 4

K̄
He) and K−ppnn-K̄0pnnn (≡ 4

K̄
H) systems. Our results

are listed in Tables V and VI.

TABLE V. Properties of the 4
K̄He system with J π = 0−.

Model Kyoto AY

Type I Type II

B (MeV) 67.9 72.7 85.2

! (MeV) 28.3 74.1 86.5

δ
√

s (MeV) −67.6 − i23.0 −18.4 − i15.0

PK− 0.08 0.06 0.16

PK̄0 0.92 0.94 0.84
√

〈r2
NN 〉 (fm) 1.98 1.91 2.07

√
〈r2

K̄N
〉 (fm) 1.83 1.72 1.81

√
〈r2

N 〉 (fm) 1.22 1.18 1.27
√

〈r2
K̄
〉 (fm) 1.22 1.12 1.14

〈T 〉K−
G (MeV) 32.6 + i6.75 26.7 + i16.2 50.3 + i7.22

〈V 〉K−
G (MeV) −25.1 − i6.74 −20.0 − i15.9 −42.3 − i12.0

〈T 〉K̄0

G (MeV) 214 + i27.8 240 + i66.0 183 + i52.7

〈V 〉K̄0

G (MeV) −265 − i38.4 −300 − i94.3 −232 − i88.3

2〈V 〉K−K̄0

G (MeV) −24.8 − i3.66 −20.2 − i9.13 −43.9 − i2.82

P I=0
K̄N

0.28 0.27 0.31

P I=1
K̄N

0.72 0.73 0.69

TABLE VI. Properties of the 4
K̄H system with J π = 0−.

Model Kyoto AY

Type I Type II

B (MeV) 69.6 75.5 87.4

! (MeV) 28.0 74.5 87.2

δ
√

s (MeV) −68.7 − i22.4 −19.1 − i14.9

PK− 0.93 0.94 0.86

PK̄0 0.07 0.06 0.14
√

〈r2
NN 〉 (fm) 1.96 1.89 2.04

√
〈r2

K̄N
〉 (fm) 1.82 1.71 1.79

√
〈r2

N 〉 (fm) 1.21 1.17 1.26
√

〈r2
K̄
〉 (fm) 1.21 1.11 1.13

〈T 〉K−
G (MeV) 216 + i28.1 244 + i66.6 188 + i53.4

〈V 〉K−
G (MeV) −269 − i39.1 −306 − i95.7 −241 − i90.0

〈T 〉K̄0

G (MeV) 30.5 + i5.50 25.1 + i14.7 47.0 + i6.54

〈V 〉K̄0

G (MeV) −23.0 − i5.54 −18.5 − i14.2 −38.7 − i10.9

2〈V 〉K−K̄0

G (MeV) −24.4 − i3.00 −19.9 − i8.71 −42.7 + i2.64

P I=0
K̄N

0.28 0.27 0.30

P I=1
K̄N

0.72 0.73 0.70

The binding energy with Type II is 5 MeV larger than that
with Type I. The decay width with Type II (∼75 MeV) is
about three times larger than that with Type I (∼28 MeV).
The rms distances

√
〈r2

NN 〉,
√

〈r2
K̄N

〉,
√

〈r2
N 〉, and

√
〈r2

K〉 with
Type II are smaller than those with Type I. The probabilities
PK− and PK̄0 are not sensitive to the choice of Types I and
II. In contrast to these features, the energy decomposition
of the K̄NNNN exhibits different characteristics from the
three- and four-body systems. The incomplete cancellation
of the kinetic energy and potential energy in the dominant
component (〈T 〉K̄0

G + 〈K〉K̄0

G in 4
K̄

He and 〈T 〉K−

G + 〈K〉K−

G in
4
K̄

H) leaves sizable contributions to the binding energy, which
are comparable with the off-diagonal components 2〈V 〉K−K̄0

G .
For the decay widths, the diagonal channels are also important
as in the four-body systems.

From the results of PK− and PK̄0 , we see that the dominant
component in the 4

K̄
He (4

K̄
H) system is the K̄0ppnn (K−ppnn)

channel, although the K−pppn (K̄0pnnn) channel contains
more K̄N I = 0 components than the K̄0ppnn (K−ppnn)
channel. This is because the nucleon contribution of the
K̄0ppnn (K−ppnn) channel, which can form an α-particle
configuration giving the binding energy about 30 MeV, is
larger than the nucleon contribution of the K−pppn (K̄0pnnn)
channel, and thus the K̄0ppnn (K−ppnn) channel is favored.
It is also for this reason that the K̄0 (K−) diagonal component
gains the binding energy in the 4

K̄
He (4

K̄
H) system, as we see

above.
The Coulomb splitting between these two systems is larger

than that in the K̄NN systems, %B = B(4
K̄

He) − B(4
K̄

H) ∼
2 MeV. There is one repulsive Coulombic pair in the K̄0ppnn

065202-10

OHNISHI, HORIUCHI, HOSHINO, MIYAHARA, AND HYODO PHYSICAL REVIEW C 95, 065202 (2017)

moves in the whole region of the nuclear system in order to
gain the energy from the strong K̄N interaction.

With the AY potential, the binding energy of the K̄NNN
system is about 30 MeV larger than the binding energies with
the Kyoto K̄N potential, and the decay width is ! ∼ 79 MeV.
The particle density distributions and the rms radii are similar
to those obtained with the Kyoto K̄N potential with Type
II, although there is about 30 MeV difference between the
binding energies with these two potentials. The tail of the wave
function is considered to be related to the binding energy, but
the central densities and rms radii are not determined only by
the binding energy. It is now clear that the deeply bound (B >
100 MeV in Refs. [6,7]) and high density (8.2 times the normal
density shown in Ref. [7]) K̄NNN state is not realized in the
accurate few-body calculation. Such an extreme result can be
regarded as an artifact due to the approximated treatment of the
few-body systems, e.g., the optical potential or the g-matrix
approach [6,7] which makes the NN repulsive core soft. A
detailed discussion on the effect of the NN repulsive core in the
light kaonic nuclei will be given in the following section V D.
We, however, emphasize that the existence of the bound state
is confirmed also with the realistic Kyoto K̄N interaction, and
the central density of nucleons can be about two times larger
than that in the 3He.

C. Structure of K̄ N N N N quasibound state

Next, we investigate the structure of the five-body systems,
strange tetrabaryon K̄NNNN systems with J π = 0−. We find
isospin-doublet quasibound states in the K−pppn-K̄0ppnn
(≡ 4

K̄
He) and K−ppnn-K̄0pnnn (≡ 4

K̄
H) systems. Our results

are listed in Tables V and VI.

TABLE V. Properties of the 4
K̄He system with J π = 0−.

Model Kyoto AY

Type I Type II

B (MeV) 67.9 72.7 85.2

! (MeV) 28.3 74.1 86.5

δ
√

s (MeV) −67.6 − i23.0 −18.4 − i15.0

PK− 0.08 0.06 0.16

PK̄0 0.92 0.94 0.84
√

〈r2
NN 〉 (fm) 1.98 1.91 2.07

√
〈r2

K̄N
〉 (fm) 1.83 1.72 1.81

√
〈r2

N 〉 (fm) 1.22 1.18 1.27
√

〈r2
K̄
〉 (fm) 1.22 1.12 1.14

〈T 〉K−
G (MeV) 32.6 + i6.75 26.7 + i16.2 50.3 + i7.22

〈V 〉K−
G (MeV) −25.1 − i6.74 −20.0 − i15.9 −42.3 − i12.0

〈T 〉K̄0

G (MeV) 214 + i27.8 240 + i66.0 183 + i52.7

〈V 〉K̄0

G (MeV) −265 − i38.4 −300 − i94.3 −232 − i88.3

2〈V 〉K−K̄0

G (MeV) −24.8 − i3.66 −20.2 − i9.13 −43.9 − i2.82

P I=0
K̄N

0.28 0.27 0.31

P I=1
K̄N

0.72 0.73 0.69

TABLE VI. Properties of the 4
K̄H system with J π = 0−.

Model Kyoto AY

Type I Type II

B (MeV) 69.6 75.5 87.4

! (MeV) 28.0 74.5 87.2

δ
√

s (MeV) −68.7 − i22.4 −19.1 − i14.9

PK− 0.93 0.94 0.86

PK̄0 0.07 0.06 0.14
√

〈r2
NN 〉 (fm) 1.96 1.89 2.04

√
〈r2

K̄N
〉 (fm) 1.82 1.71 1.79

√
〈r2

N 〉 (fm) 1.21 1.17 1.26
√

〈r2
K̄
〉 (fm) 1.21 1.11 1.13

〈T 〉K−
G (MeV) 216 + i28.1 244 + i66.6 188 + i53.4

〈V 〉K−
G (MeV) −269 − i39.1 −306 − i95.7 −241 − i90.0

〈T 〉K̄0

G (MeV) 30.5 + i5.50 25.1 + i14.7 47.0 + i6.54

〈V 〉K̄0

G (MeV) −23.0 − i5.54 −18.5 − i14.2 −38.7 − i10.9

2〈V 〉K−K̄0

G (MeV) −24.4 − i3.00 −19.9 − i8.71 −42.7 + i2.64

P I=0
K̄N

0.28 0.27 0.30

P I=1
K̄N

0.72 0.73 0.70

The binding energy with Type II is 5 MeV larger than that
with Type I. The decay width with Type II (∼75 MeV) is
about three times larger than that with Type I (∼28 MeV).
The rms distances

√
〈r2

NN 〉,
√

〈r2
K̄N

〉,
√

〈r2
N 〉, and

√
〈r2

K〉 with
Type II are smaller than those with Type I. The probabilities
PK− and PK̄0 are not sensitive to the choice of Types I and
II. In contrast to these features, the energy decomposition
of the K̄NNNN exhibits different characteristics from the
three- and four-body systems. The incomplete cancellation
of the kinetic energy and potential energy in the dominant
component (〈T 〉K̄0

G + 〈K〉K̄0

G in 4
K̄

He and 〈T 〉K−

G + 〈K〉K−

G in
4
K̄

H) leaves sizable contributions to the binding energy, which
are comparable with the off-diagonal components 2〈V 〉K−K̄0

G .
For the decay widths, the diagonal channels are also important
as in the four-body systems.

From the results of PK− and PK̄0 , we see that the dominant
component in the 4

K̄
He (4

K̄
H) system is the K̄0ppnn (K−ppnn)

channel, although the K−pppn (K̄0pnnn) channel contains
more K̄N I = 0 components than the K̄0ppnn (K−ppnn)
channel. This is because the nucleon contribution of the
K̄0ppnn (K−ppnn) channel, which can form an α-particle
configuration giving the binding energy about 30 MeV, is
larger than the nucleon contribution of the K−pppn (K̄0pnnn)
channel, and thus the K̄0ppnn (K−ppnn) channel is favored.
It is also for this reason that the K̄0 (K−) diagonal component
gains the binding energy in the 4

K̄
He (4

K̄
H) system, as we see

above.
The Coulomb splitting between these two systems is larger

than that in the K̄NN systems, %B = B(4
K̄

He) − B(4
K̄

H) ∼
2 MeV. There is one repulsive Coulombic pair in the K̄0ppnn
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TABLE IV: Binding energies (B.E.) and rms distances of NN (RNN ), K̄N (RK̄N ), and K̄K̄ (RK̄K̄) pairs in the lowest states
of kaonic and normal nuclei. Calculated values obtained with the set-I (weak-binding) and set-II (deep-binding) cases are
compared with other theoretical results obtained with weak-type chiral and deep-type AY interactions by Maeda et al. [18],
Ohnishi et al. [19], and Barnea et al. [17]. For values of weak-type chiral interactions, the weak-chiral-regime result of Ref. [18],
the Kyoto type-I result of Ref. [19], and the BGL result of Ref. [17] are listed. For normal nuclei, the AV4’ result obtained by
Ohnishi et al. from Ref. [19] is also shown.

present Maeda [18] Ohnishi [19] Barnea [17]

set-I set-II Chiral AY Chiral AY Chiral

⌫N (fm�2) 0.16 0.25

kaonic nuclei(J⇡, T )

K̄N(1/2�, 0) B.E. (MeV) 10 27 8.3 26.6 11.4

RK̄N (fm) 2.17 1.73 2.25 1.41 1.87

K̄NN(0�, 1/2) B.E. (MeV) 20.8 47.8 23.8 51.5 27.9 48.7 15.7

RNN (fm) 1.77 1.41 1.93 1.62 2.16 1.84

RK̄N (fm) 2.17 1.73 1.80 1.55

K̄K̄NN ; (0+, 0) B.E. (MeV) 40.7 97.3 43 93 32.1

RNN (fm) 1.77 1.41 1.57 1.35 1.84

RK̄K̄ (fm) 2.50 2.00 2.31

K̄NNN(1/2�, 0) B.E. (MeV) 40.4 73.6 42 69 45.3 72.6

RNN (fm) 1.77 1.41 1.89 1.75 1.99 1.87

RK̄N (fm) 2.17 1.73 1.79 1.63

K̄NNNN(0�, 1/2) B.E. (MeV) 60.8 93.2 67.9 85.2

RNN (fm) 1.77 1.41 1.98 2.07

RK̄N (fm) 2.17 1.73 1.83 1.81

nuclei(J⇡, T )

NN(1+, 0) B.E. (MeV) 1.6 0.8 2.24 2.24

RNN (fm) 1.77 1.41 4.04 4.04

NNN(1/2+, 1/2) B.E. (MeV) 6.7 6.6 8.99 8.99

NNNN(0+, 0) B.E. (MeV) 23.5 28.7 32.1 32.1

the perturbative picture, the constant SK̄ in the K̄NN

and K̄K̄NN systems can be described by the conden-
sation of two antikaons in the same orbit around two
nucleons. if the K̄K̄ interaction is minor. It should be
noted that, when three antikaons around two nucleons
are considered, the additional(third) antikaon no longer
exhibits isoscalar K̄N correlation because the isospin is
already saturated in the K̄K̄NN system.

The higher states K̄K̄NN(0+, 1), K̄K̄NN(0+, 2), and
K̄K̄NN(1+, 1), exhibit weaker isoscalar K̄N correla-
tions because these state have lower symmetry in the
isospin coupling between antikaons and nucleons than
K̄K̄NN(0+, 0) does. In particular, the K̄K̄NN(0+, 1)
and K̄K̄NN(0+, 2) states are composed of isovector NN

and K̄N pairs coupled to T = 1 and T = 2, respectively,
and the K̄K̄NN(1+, 1) state contains an isoscalar NN

pair.

Comparing K̄K̄NN(0+, 1) and K̄K̄NN(1+, 1), one

can see the competition between the isoscalar K̄N

and NN correlations. K̄K̄NN(0+, 1) has a moderate
isoscalar K̄N component with a fraction of 1/2 but no
isoscalar NN component, whereas the K̄K̄NN(1+, 1)
state contains a pure isoscalar NN component but no
isoscalar K̄N correlation with a fraction 1/4 of the T = 0
component. For these two states, SK̄ is constant at
9.1 MeV for the set-I case and 19.5 MeV for the set-
II case. The energy di↵erence between K̄K̄NN(0+, 1)
and K̄K̄NN(1+, 1) is the same value as the energy dif-
ference between K̄NN(0�, 1/2) and K̄NN(1�, 1/2), i.e.,
approximately 5 MeV in the set-I result and ⇡ 20 MeV
in the set-II result.

In future experimental searches for double-kaonic nu-
clei, the K̄K̄NN states might be observed as the quasi-
bound resonances in the invariant mass spectra of such
modes as the ⇤⇤, ⇤⌃±

⇡
⌥, and ⌅�

p decays. The ⇤⇤
mode for the T = 0 spectrum shows the K̄K̄NN(0+, 0)
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TABLE IV: Binding energies (B.E.) and rms distances of NN (RNN ), K̄N (RK̄N ), and K̄K̄ (RK̄K̄) pairs in the lowest states
of kaonic and normal nuclei. Calculated values obtained with the set-I (weak-binding) and set-II (deep-binding) cases are
compared with other theoretical results obtained with weak-type chiral and deep-type AY interactions by Maeda et al. [18],
Ohnishi et al. [19], and Barnea et al. [17]. For values of weak-type chiral interactions, the weak-chiral-regime result of Ref. [18],
the Kyoto type-I result of Ref. [19], and the BGL result of Ref. [17] are listed. For normal nuclei, the AV4’ result obtained by
Ohnishi et al. from Ref. [19] is also shown.

present Maeda [18] Ohnishi [19] Barnea [17]

set-I set-II Chiral AY Chiral AY Chiral

⌫N (fm�2) 0.16 0.25

kaonic nuclei(J⇡, T )

K̄N(1/2�, 0) B.E. (MeV) 10 27 8.3 26.6 11.4

RK̄N (fm) 2.17 1.73 2.25 1.41 1.87

K̄NN(0�, 1/2) B.E. (MeV) 20.8 47.8 23.8 51.5 27.9 48.7 15.7

RNN (fm) 1.77 1.41 1.93 1.62 2.16 1.84

RK̄N (fm) 2.17 1.73 1.80 1.55

K̄K̄NN ; (0+, 0) B.E. (MeV) 40.7 97.3 43 93 32.1

RNN (fm) 1.77 1.41 1.57 1.35 1.84

RK̄K̄ (fm) 2.50 2.00 2.31

K̄NNN(1/2�, 0) B.E. (MeV) 40.4 73.6 42 69 45.3 72.6

RNN (fm) 1.77 1.41 1.89 1.75 1.99 1.87

RK̄N (fm) 2.17 1.73 1.79 1.63

K̄NNNN(0�, 1/2) B.E. (MeV) 60.8 93.2 67.9 85.2

RNN (fm) 1.77 1.41 1.98 2.07

RK̄N (fm) 2.17 1.73 1.83 1.81

nuclei(J⇡, T )

NN(1+, 0) B.E. (MeV) 1.6 0.8 2.24 2.24

RNN (fm) 1.77 1.41 4.04 4.04

NNN(1/2+, 1/2) B.E. (MeV) 6.7 6.6 8.99 8.99

NNNN(0+, 0) B.E. (MeV) 23.5 28.7 32.1 32.1

the perturbative picture, the constant SK̄ in the K̄NN

and K̄K̄NN systems can be described by the conden-
sation of two antikaons in the same orbit around two
nucleons. if the K̄K̄ interaction is minor. It should be
noted that, when three antikaons around two nucleons
are considered, the additional(third) antikaon no longer
exhibits isoscalar K̄N correlation because the isospin is
already saturated in the K̄K̄NN system.

The higher states K̄K̄NN(0+, 1), K̄K̄NN(0+, 2), and
K̄K̄NN(1+, 1), exhibit weaker isoscalar K̄N correla-
tions because these state have lower symmetry in the
isospin coupling between antikaons and nucleons than
K̄K̄NN(0+, 0) does. In particular, the K̄K̄NN(0+, 1)
and K̄K̄NN(0+, 2) states are composed of isovector NN

and K̄N pairs coupled to T = 1 and T = 2, respectively,
and the K̄K̄NN(1+, 1) state contains an isoscalar NN

pair.

Comparing K̄K̄NN(0+, 1) and K̄K̄NN(1+, 1), one

can see the competition between the isoscalar K̄N

and NN correlations. K̄K̄NN(0+, 1) has a moderate
isoscalar K̄N component with a fraction of 1/2 but no
isoscalar NN component, whereas the K̄K̄NN(1+, 1)
state contains a pure isoscalar NN component but no
isoscalar K̄N correlation with a fraction 1/4 of the T = 0
component. For these two states, SK̄ is constant at
9.1 MeV for the set-I case and 19.5 MeV for the set-
II case. The energy di↵erence between K̄K̄NN(0+, 1)
and K̄K̄NN(1+, 1) is the same value as the energy dif-
ference between K̄NN(0�, 1/2) and K̄NN(1�, 1/2), i.e.,
approximately 5 MeV in the set-I result and ⇡ 20 MeV
in the set-II result.

In future experimental searches for double-kaonic nu-
clei, the K̄K̄NN states might be observed as the quasi-
bound resonances in the invariant mass spectra of such
modes as the ⇤⇤, ⇤⌃±

⇡
⌥, and ⌅�

p decays. The ⇤⇤
mode for the T = 0 spectrum shows the K̄K̄NN(0+, 0)

Y. Kanada-En’yo 
EPJA 57, 185 (2021)
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TABLE X. Properties of the 6
K̄Li system with J π = 1−.

Model Kyoto AY

Type I Type II

B (MeV) 70.8 77.5 92.9

" (MeV) 26.4 75.2 88.0

δ
√

s (MeV) −70.2 − i21.5 −13.2 − i10.4

PK− 0.07 0.06 0.16

PK̄0 0.93 0.94 0.84
√

〈r2
NN 〉 (fm) 2.95 2.90 2.83

√
〈r2

K̄N
〉 (fm) 2.54 2.45 2.37

√
〈r2

N 〉 (fm) 1.91 1.88 1.83
√

〈r2
K̄
〉 (fm) 1.54 1.45 1.40

〈T 〉K−
G (MeV) 33.3 + i5.24 27.3 + i16.9 57.1 + i8.22

〈V 〉K−
G (MeV) −26.4 − i5.55 −21.1 − i16.8 −50.3 − i13.7

〈T 〉K̄0

G (MeV) 240 + i24.7 268 + i61.3 219 + i46.1

〈V 〉K̄0

G (MeV) −294 − i35.2 −332 − i89.9 −275 − i81.3

2〈V 〉K−K̄0

G (MeV) −23.8 − i2.40 −19.2 − i9.03 −43.3 − i3.31

P I=0
K̄N

0.27 0.27 0.29

P I=1
K̄N

0.73 0.73 0.71

become 10 and 7 MeV larger than those with J π = 1−.
Namely, the stronger K̄N attraction leads to more drastic level
inversion in the seven-body systems. In this way, there is a
possibility to extract the information on the K̄N interaction not
only from the binding energies but also from the ground state
quantum number J π and from the splitting between J π = 0−

and 1− states.
Finally, we show, in Figs. 13, 14, 15, and 16, the particle

density distributions of the 6
K̄

He system with J π = 0− and
1−. The nucleon density distributions of the 6He (J π = 0+)
and 6Li (J π = 1+) systems are also plotted for comparison. In
the K̄NNNNNN system with J π = 0−, the central nucleon
density becomes slightly larger than that with J π = 1− and

TABLE XI. Properties of the 6
K̄He system with J π = 1−.

Model Kyoto AY

Type I Type II

B (MeV) 72.8 80.7 95.6

" (MeV) 26.0 75.6 88.5

δ
√

s (MeV) −71.6 − i20.8 −13.8 − i10.4

PK− 0.93 0.94 0.86

PK̄0 0.07 0.06 0.14
√

〈r2
NN 〉 (fm) 2.95 2.89 2.81

√
〈r2

K̄N
〉 (fm) 2.53 2.44 2.36

√
〈r2

N 〉 (fm) 1.91 1.87 1.82
√

〈r2
K̄
〉 (fm) 1.53 1.44 1.39

〈T 〉K−
G (MeV) 242 + i25.0 272 + i61.9 223 + i46.8

〈V 〉K−
G (MeV) −298 − i35.9 −339 − i91.3 −284 − i83.0

〈T 〉K̄0

G (MeV) 31.2 + i3.96 25.6 + i15.4 53.5 + i7.40

〈V 〉K̄0

G (MeV) −24.2 − i4.36 −19.7 − i15.2 −46.5 − i12.4

2〈V 〉K−K̄0

G (MeV) −23.3 − i1.69 −18.8 − i8.64 −42.3 − i3.10

P I=0
K̄N

0.27 0.26 0.29

P I=1
K̄N

0.73 0.74 0.71

about two times larger than that in the 6Li. Meanwhile, the
central antikaon density with J π = 0− is slightly smaller than
that with J π = 1−.

In Fig. 17, we summarize the nucleon and antikaon density
distributions of various kaonic nuclei from three- to seven-
body systems. The central nucleon densities of the seven-body
systems become about half and antikaon densities become
one third of the densities of the four- and five-body systems.
The central nucleon densities of the five-body systems are
highest in the light kaonic nuclei up to seven-body systems,
while the densities are not as high as those suggested by
using the effective interaction based on the g-matrix approach
in Refs. [7,8]. The large nucleon density in the five-body
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FIG. 13. Same as Fig. 3 but for the 6
K̄He system with J π = 0−. The nucleon density distributions for 6He with J π = 0+ is plotted for

comparison.
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FIG. 12. Antikaon density distribution ρK̄ (r) in the center-of-mass system for (a) K−pp, (b) 3
K̄H, and (c) 4

K̄H systems. The Kyoto K̄N

potential with Type I is employed for the K̄N interaction.

six-nucleon systems. With Type II, the magnitude of the real
part of δ

√
s used in the two-body K̄N interaction is smaller,

and the K̄N interaction becomes more attractive than that
with Type I. Because the J π = 0− state contains a larger
fraction of the I = 0 K̄N components than the J π = 1− state,
as in the case of the strange dibaryon K̄NN systems, the K̄N
interaction with Type II is so strong that the binding energy
of 6

K̄
Li with J π = 0− becomes larger than the J π = 1− state.

In other words, by adding an antikaon, the spin of the ground
state of the six-nucleon system may change depending on the
strength of the K̄N interaction. The inversion of the level
structure of the ground state and the first excited state by
the antikaon is also seen in the two-nucleon systems (strange
dibaryon K̄NN). The ground state of the two-nucleon sector
without the antikaon is the spin-triplet deuteron, while the

TABLE VIII. Properties of the 6
K̄Li system with J π = 0−.

Model Kyoto AY

Type I Type II

B (MeV) 69.8 79.7 103

$ (MeV) 23.7 75.6 88.0

δ
√

s (MeV) −76.2 − i18.1 −15.1 − i10.2

PK− 0.70 0.72 0.64

PK̄0 0.30 0.28 0.36
√

〈r2
NN 〉 (fm) 2.80 2.75 2.57

√
〈r2

K̄N
〉 (fm) 2.52 2.40 2.27

√
〈r2

N 〉 (fm) 1.82 1.78 1.66
√

〈r2
K̄
〉 (fm) 1.61 1.49 1.43

〈T 〉K−
G (MeV) 186 + i19.3 213 + i47.9 184 + i34.4

〈V 〉K−
G (MeV) −220 − i28.5 −258 − i69.3 −224 − i61.7

〈T 〉K̄0

G (MeV) 89.5 + i5.08 88.9 + i26.5 110 + i17.5

〈V 〉K̄0

G (MeV) −95.4 − i8.43 −97.6 − i33.4 −121 − i31.7

2〈V 〉K−K̄0

G (MeV) −30.1 + i0.703 −25.6 − i9.55 −52.4 − i2.59

P I=0
K̄N

0.41 0.41 0.41

P I=1
K̄N

0.59 0.59 0.59

spin-singlet channel is unbound. As discussed in Sec. V A,
by injecting an antikaon, the ground state is spin singlet
which maximizes the fraction of the K̄N (I = 0) component.
Recalling that the 6He and 6Li are well approximated by an
α + N + N three-body model (see, for example, Ref. [54] and
references therein), the difference of J π = 1− and J π = 0−

states of seven-body systems can be essentially caused by the
difference of the K̄NN subsystems. Similar to the three-body
systems, the level inversion can take place also in the seven-
body systems, which is driven by the balance between the
nuclear structure and the attraction in the K̄N system.

This property is more pronounced if the strength of the
K̄N attraction is further increased. For instance, when we use
the AY potential which is more attractive than the Kyoto K̄N
potential, the binding energies of 6

K̄
Li and 6

K̄
He with J π = 0−

TABLE IX. Properties of the 6
K̄He system with J π = 0−.

Model Kyoto AY

Type I Type II

B (MeV) 70.6 80.0 103

$ (MeV) 23.9 75.5 88.0

δ
√

s (MeV) −75.6 − i18.3 −14.9 − i10.2

PK− 0.41 0.41 0.40

PK̄0 0.59 0.59 0.60
√

〈r2
NN 〉 (fm) 2.79 2.74 2.56

√
〈r2

K̄N
〉 (fm) 2.51 2.40 2.27

√
〈r2

N 〉 (fm) 1.81 1.77 1.66
√

〈r2
K̄
〉 (fm) 1.61 1.49 1.43

〈T 〉K−
G (MeV) 115 + i10.5 125 + i31.1 121 + i21.1

〈V 〉K−
G (MeV) −129 − i15.7 −144 − i41.5 −137 − i37.7

〈T 〉K̄0

G (MeV) 161 + i14.2 177 + i43.4 173 + i30.6

〈V 〉K̄0

G (MeV) −188 − i21.3 −211 − i60.9 −208 − i55.4

2〈V 〉K−K̄0

G (MeV) −30.7 + i0.330 −26.2 − i9.77 −52.8 − i2.72

P I=0
K̄N

0.41 0.41 0.40

P I=1
K̄N

0.59 0.59 0.60
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FIG. 12. Antikaon density distribution ρK̄ (r) in the center-of-mass system for (a) K−pp, (b) 3
K̄H, and (c) 4

K̄H systems. The Kyoto K̄N

potential with Type I is employed for the K̄N interaction.

six-nucleon systems. With Type II, the magnitude of the real
part of δ

√
s used in the two-body K̄N interaction is smaller,

and the K̄N interaction becomes more attractive than that
with Type I. Because the J π = 0− state contains a larger
fraction of the I = 0 K̄N components than the J π = 1− state,
as in the case of the strange dibaryon K̄NN systems, the K̄N
interaction with Type II is so strong that the binding energy
of 6

K̄
Li with J π = 0− becomes larger than the J π = 1− state.

In other words, by adding an antikaon, the spin of the ground
state of the six-nucleon system may change depending on the
strength of the K̄N interaction. The inversion of the level
structure of the ground state and the first excited state by
the antikaon is also seen in the two-nucleon systems (strange
dibaryon K̄NN). The ground state of the two-nucleon sector
without the antikaon is the spin-triplet deuteron, while the

TABLE VIII. Properties of the 6
K̄Li system with J π = 0−.

Model Kyoto AY

Type I Type II

B (MeV) 69.8 79.7 103

$ (MeV) 23.7 75.6 88.0

δ
√

s (MeV) −76.2 − i18.1 −15.1 − i10.2

PK− 0.70 0.72 0.64

PK̄0 0.30 0.28 0.36
√

〈r2
NN 〉 (fm) 2.80 2.75 2.57

√
〈r2

K̄N
〉 (fm) 2.52 2.40 2.27

√
〈r2

N 〉 (fm) 1.82 1.78 1.66
√

〈r2
K̄
〉 (fm) 1.61 1.49 1.43

〈T 〉K−
G (MeV) 186 + i19.3 213 + i47.9 184 + i34.4

〈V 〉K−
G (MeV) −220 − i28.5 −258 − i69.3 −224 − i61.7

〈T 〉K̄0

G (MeV) 89.5 + i5.08 88.9 + i26.5 110 + i17.5

〈V 〉K̄0

G (MeV) −95.4 − i8.43 −97.6 − i33.4 −121 − i31.7

2〈V 〉K−K̄0

G (MeV) −30.1 + i0.703 −25.6 − i9.55 −52.4 − i2.59

P I=0
K̄N

0.41 0.41 0.41

P I=1
K̄N

0.59 0.59 0.59

spin-singlet channel is unbound. As discussed in Sec. V A,
by injecting an antikaon, the ground state is spin singlet
which maximizes the fraction of the K̄N (I = 0) component.
Recalling that the 6He and 6Li are well approximated by an
α + N + N three-body model (see, for example, Ref. [54] and
references therein), the difference of J π = 1− and J π = 0−

states of seven-body systems can be essentially caused by the
difference of the K̄NN subsystems. Similar to the three-body
systems, the level inversion can take place also in the seven-
body systems, which is driven by the balance between the
nuclear structure and the attraction in the K̄N system.

This property is more pronounced if the strength of the
K̄N attraction is further increased. For instance, when we use
the AY potential which is more attractive than the Kyoto K̄N
potential, the binding energies of 6

K̄
Li and 6

K̄
He with J π = 0−

TABLE IX. Properties of the 6
K̄He system with J π = 0−.

Model Kyoto AY

Type I Type II

B (MeV) 70.6 80.0 103

$ (MeV) 23.9 75.5 88.0

δ
√

s (MeV) −75.6 − i18.3 −14.9 − i10.2

PK− 0.41 0.41 0.40

PK̄0 0.59 0.59 0.60
√

〈r2
NN 〉 (fm) 2.79 2.74 2.56

√
〈r2

K̄N
〉 (fm) 2.51 2.40 2.27

√
〈r2

N 〉 (fm) 1.81 1.77 1.66
√

〈r2
K̄
〉 (fm) 1.61 1.49 1.43

〈T 〉K−
G (MeV) 115 + i10.5 125 + i31.1 121 + i21.1

〈V 〉K−
G (MeV) −129 − i15.7 −144 − i41.5 −137 − i37.7

〈T 〉K̄0

G (MeV) 161 + i14.2 177 + i43.4 173 + i30.6

〈V 〉K̄0

G (MeV) −188 − i21.3 −211 − i60.9 −208 − i55.4

2〈V 〉K−K̄0

G (MeV) −30.7 + i0.330 −26.2 − i9.77 −52.8 − i2.72

P I=0
K̄N

0.41 0.41 0.40

P I=1
K̄N

0.59 0.59 0.60
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TABLE X. Properties of the 6
K̄Li system with J π = 1−.

Model Kyoto AY

Type I Type II

B (MeV) 70.8 77.5 92.9

" (MeV) 26.4 75.2 88.0

δ
√

s (MeV) −70.2 − i21.5 −13.2 − i10.4

PK− 0.07 0.06 0.16

PK̄0 0.93 0.94 0.84
√

〈r2
NN 〉 (fm) 2.95 2.90 2.83

√
〈r2

K̄N
〉 (fm) 2.54 2.45 2.37

√
〈r2

N 〉 (fm) 1.91 1.88 1.83
√

〈r2
K̄
〉 (fm) 1.54 1.45 1.40

〈T 〉K−
G (MeV) 33.3 + i5.24 27.3 + i16.9 57.1 + i8.22

〈V 〉K−
G (MeV) −26.4 − i5.55 −21.1 − i16.8 −50.3 − i13.7

〈T 〉K̄0

G (MeV) 240 + i24.7 268 + i61.3 219 + i46.1

〈V 〉K̄0

G (MeV) −294 − i35.2 −332 − i89.9 −275 − i81.3

2〈V 〉K−K̄0

G (MeV) −23.8 − i2.40 −19.2 − i9.03 −43.3 − i3.31

P I=0
K̄N

0.27 0.27 0.29

P I=1
K̄N

0.73 0.73 0.71

become 10 and 7 MeV larger than those with J π = 1−.
Namely, the stronger K̄N attraction leads to more drastic level
inversion in the seven-body systems. In this way, there is a
possibility to extract the information on the K̄N interaction not
only from the binding energies but also from the ground state
quantum number J π and from the splitting between J π = 0−

and 1− states.
Finally, we show, in Figs. 13, 14, 15, and 16, the particle

density distributions of the 6
K̄

He system with J π = 0− and
1−. The nucleon density distributions of the 6He (J π = 0+)
and 6Li (J π = 1+) systems are also plotted for comparison. In
the K̄NNNNNN system with J π = 0−, the central nucleon
density becomes slightly larger than that with J π = 1− and

TABLE XI. Properties of the 6
K̄He system with J π = 1−.

Model Kyoto AY

Type I Type II

B (MeV) 72.8 80.7 95.6

" (MeV) 26.0 75.6 88.5

δ
√

s (MeV) −71.6 − i20.8 −13.8 − i10.4

PK− 0.93 0.94 0.86

PK̄0 0.07 0.06 0.14
√

〈r2
NN 〉 (fm) 2.95 2.89 2.81

√
〈r2

K̄N
〉 (fm) 2.53 2.44 2.36

√
〈r2

N 〉 (fm) 1.91 1.87 1.82
√

〈r2
K̄
〉 (fm) 1.53 1.44 1.39

〈T 〉K−
G (MeV) 242 + i25.0 272 + i61.9 223 + i46.8

〈V 〉K−
G (MeV) −298 − i35.9 −339 − i91.3 −284 − i83.0

〈T 〉K̄0

G (MeV) 31.2 + i3.96 25.6 + i15.4 53.5 + i7.40

〈V 〉K̄0

G (MeV) −24.2 − i4.36 −19.7 − i15.2 −46.5 − i12.4

2〈V 〉K−K̄0

G (MeV) −23.3 − i1.69 −18.8 − i8.64 −42.3 − i3.10

P I=0
K̄N

0.27 0.26 0.29

P I=1
K̄N

0.73 0.74 0.71

about two times larger than that in the 6Li. Meanwhile, the
central antikaon density with J π = 0− is slightly smaller than
that with J π = 1−.

In Fig. 17, we summarize the nucleon and antikaon density
distributions of various kaonic nuclei from three- to seven-
body systems. The central nucleon densities of the seven-body
systems become about half and antikaon densities become
one third of the densities of the four- and five-body systems.
The central nucleon densities of the five-body systems are
highest in the light kaonic nuclei up to seven-body systems,
while the densities are not as high as those suggested by
using the effective interaction based on the g-matrix approach
in Refs. [7,8]. The large nucleon density in the five-body
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FIG. 13. Same as Fig. 3 but for the 6
K̄He system with J π = 0−. The nucleon density distributions for 6He with J π = 0+ is plotted for

comparison.
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• Exclusive analysis by detecting all the decay product becomes 
more and more difficult with increasing mass number. 

• Instead, detect forward knock-out nucleons with hyperon tag 

Experimental strategy
27
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• Exclusive analysis by detecting all the decay product becomes 
more and more difficult with increasing mass number. 

• Instead, detect forward knock-out nucleons with hyperon tag 

Experimental strategy
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• In semi-inclusive spectrum at forward angle, we clearly see 
the quasi-free peak but cannot isolate the bound state. 

• The situation does not change in  exclusive analysisΛpn

(K-, N) at forward angle
28
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FIG. 10. mX spectra for various intervals of qX : (a) qX ! 0.3 GeV/c, (b) 0.3 < qX ! 0.6 GeV/c, (c) 0.6 < qX ! 0.9 GeV/c, and
(d) 0.9 GeV/c < qX . The dotted lines correspond to the mX -slice regions given in Fig. 11.

2425 and 2234, respectively. We plotted the signal of K̄NN
formation and its !p decay as a red line, and K̄NN → "0 p in
the !pn-selection window as a red dashed line. To simplify
the plot, we summed the QFK̄−abs and broad contributions
from the !pn final state and from contaminations of the "NN
final states, because the spectra for each reaction process are
relatively similar [see Figs. 7(b) and 9]. As expected, the
K̄NN formation signal is clearly seen in Fig. 10(b) in the mX
spectrum, and in Fig. 11(b) in the qX spectrum.

At the lowest qX region of the mX spectrum in Fig. 10(a),
the spectrum is confined in a medium mass region due to the
kinematical boundary (see Figs. 4 and 5). In this region, the
backward K̄ part of the QFK̄−abs process K− + N → K̄ + n
becomes dominant. In Fig. 10(b), the K̄NN formation signal
is dominant and contributions from other processes, in par-
ticular the QFK̄−abs process, are relatively suppressed. In the
relatively large qX region in Fig. 10(c), the broad component
becomes dominant, while the K̄NN formation signal becomes
weaker. At an even larger qX region in Fig. 10(d), the for-
ward K̄ part of the QFK̄−abs process becomes large, which

distributes to the large mX side. This events concentration
may partially arise from direct K− absorption on two protons
in 3He (2NA), but the width is too great to be explained by
the Fermi motion. Therefore, it is difficult to interpret 2NA
as the dominant process of this events concentration. In this
qX region, there is also a large contribution from the broad
component.

Figure 11 shows the qX spectra sliced on mX . Figure 11(a)
shows the region below the K̄NN formation signal where the
broad distribution is dominant, having small leakage from the
signal. As shown in the spectrum, the broad distribution has no
clear structure and has a larger yield at a higher qX region than
at a lower qX region. Figure 11(b) shows the K̄NN formation
signal region, in which the events clearly concentrate at the
lower qX side. In Fig. 11(c), we can see the backward K̄
part of the QFK̄−abs process, together with the leakage from
the signal and broad distribution. In contrast to K̄NN , the
QFK̄−abs process even more strongly concentrates in the lower
qX region (neutron is emitted to the very forward direction).
To compare the qX dependence with that of the K̄NN formation
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• large-q region would be better to isolate the bound state. 
•Wide angular acceptance to study q-dependence.

Possible setup
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• large-q region would be better to isolate the bound state. 
•Wide angular acceptance to study q-dependence.

Possible setup
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Expected resolution
30

LTOF (m) time resolution (ps) mass resolution (MeV)
E15 NC 14 150 10
Cap 2 100 50

Forward 7 150 20

   



• Moderate resolution ~50 MeV 
can be improved to <20 MeV with a kinematic fit. 

• Reasonable resolution to identify missing nucleon ~50 MeV

Expected resolution
30

LTOF (m) time resolution (ps) mass resolution (MeV)
E15 NC 14 150 10
Cap 2 100 50

Forward 7 150 20
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•momentum transfer is large in (K-,d) 

•no clear signal of quasi-elastic process  3He(K−, d)

(K-, N) vs. (K-, d)
31
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•We can reconstruct full reaction kinematics without 
detecting one of the decay particle 
• neutral paritcle 
• low-momentum proton.  (cf. spectator in decay)

Other merits with the forward counter
32

K− +4 He → K̄NNN + n

→ {Λpns + n
Λnps + n

K− +3 He → K̄NN + n
→ πΣps + n

Useful to analyze decay kinematics 
and to understand background processes



•The situation is similar to what we observed with a helium-3 target

(K-, N) on Carbon
33
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It is given by the two body laboratory cross section multi-
plied by the so-called effective nucleon number (Neff).

We first use the plane wave approximation to evaluate
N

pw
eff . At 0±, where only non-spin-flip amplitude is rele-

vant, N
pw
eff is given by

N
pw
eff ! !2J 1 1" !2jN 1 1" !2!K 1 1"

3

√

!K jN J
0 2

1
2

1
2

!2

F!q" . (2)

In this equation we assumed that a nucleon in a jN orbit
is knocked out and a kaon enters in an !K orbit making a
transition from a 01 closed shell target to a spin J state.
Here the form factor F!q" is given by the initial nucleon
and final kaon wave functions as

F!q" !

√
Z

r2 dr RK !r"RN !r"jL!qr"

!2

, (3)

where L ! J 6 1
2 is the transferred angular momentum.

For an oscillator potential of radius parameter b, the
radial wave function is

R!!r" ! c!!r#b"!e2r2#2b2
(4)

for nodeless states, where c! ! $2l12#b3pp !2l 1
1"!!%1#2. In the present case it is enough to consider
natural parity stretched states with L ! !N 1 !K since
the transferred momentum q is larger than the Fermi
momentum. The form factor [Eq. (4)] is well known for
the harmonic oscillator wave function [13] as

F!q" !
!2Z"Le2Z

$!2L 1 1"!!%2

$G!L 1 3#2"%2

G!!K 1 3#2"G!!N 1 3#2"
(5)

with Z ! !bq"2#2, where the radius parameter b ! mv
h̄

has to be replaced by
2
b2 !

1
b2

N
1

1
b2

K
(6)

to account for the different radius parameters for the
nucleon (bN ) and the kaon (bK ) where 1#b2

K !
p

8#b2
N .

N
pw
eff is further reduced by the distortion of incoming and

outgoing waves as

Neff ! N
pw
eff Deik . (7)

The distortion Deik is estimated by the eikonal absorption
where the imaginary parts of the K2 and proton optical
potentials are given by their total cross sections with
nucleons. At PK ! 1 GeV#c, total cross sections of the
K2 nucleon and the p nucleon are almost the same, and
we take both to be 40 mb. The small radius parameter b
indicates larger cross sections through the high momentum
component; we thus evaluated Neff for bK ! bN also as
the smallest value.

The cross section of the elementary reaction was given
by the phase shift analysis of available data [15]. Here we
need to consider only the non-spin-flip amplitude ! f" as

explained above. Since the kaon and nucleon are isospin 1
2

particles there are I ! 0 ! f0" and I ! 1 ! f1" amplitudes.
The amplitudes for elastic and charge exchange scattering
are represented by appropriate linear combinations of the
isospin amplitudes as

fK2n!K2n ! f1, (8)

fK2p!K2p !
1
2

! f1 1 f0" , (9)

fK2p!K̄0n !
1
2

! f1 2 f0" . (10)

The c.m. (center-of-mass) differential cross section of the
three reactions at 180± are shown in Fig. 3 as a function of
incident kaon momentum. The cross sections depend on
the incident momentum. For instance, the K2p ! K2p
reaction has a peak at around 1 GeV#c. We thus take
1 GeV#c for the incident kaon momentum. Since the tar-
get nucleon is moving in a nucleus, Fermi averaging has
to be made for the two body cross section which smears
the fine momentum dependence. The c.m. cross section
is reduced by 20% to 30% depending on models for this
averaging. We take &1.3 mb#sr as the c.m. cross section
at 1 GeV#c.

Here we consider I ! 0 symmetric nuclei as targets.
The (K2, p) reaction produces only an I ! 1 state; on the
other hand, the (K2, n) reaction can produce both I ! 0
and 1 states. The K̄N system is strongly attractive in the
I ! 0 channel though not so much in the I ! 1 channel.
The kaon-nucleus potential is an average of both channels
and thus depends little on the total isospin of kaonic nuclei.
Consequently, we expect that the I ! 0 state produced by
the (K2, n) reaction appears at nearly the same excitation
energy. The elementary cross section for the (K2, n)
reaction in Eq. (1) becomes the sum of the K2n ! K2n
and K2p ! K̄0n cross sections. The incoherent sum
of the two cross sections may not be inappropriate for
the evaluation since the K2 and K̄0 mass difference is
considered to be large on a nuclear physics scale.

m
b/

sr

P   (MeV/c)K

0

1

2

3

4

5

6

7

8

200 400 600 800 1000 1200 1400 1600

p(K,p)K
n(K,n)K
p(K,n)K

p(K ,p)K
n(K ,n)K
p(K ,n)K

-
-_
0

-
-
-

FIG. 3. The c.m. differential cross sections of the three reac-
tions are shown as a function of incident kaon lab momentum.
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Fig. 1. Missing mass spectra of the 12C(K−, n)
reaction (upper) and 12C(K−, p) reaction
(lower). The solid curves represent the
calculated best fit spectra for potentials
with Re(V)=−190 MeV and Im(V)=−40
MeV (upper) and Re(V)=−160 MeV
Im(V)=−50 MeV (lower). The dotted
curves represent the calculated spectra for
Re(V)=−60 MeV and Im(V)=−60 MeV.
The dot-dashed curves represent a back-
ground process (see main text).

surrounding the target. The target had dimensions of 2× 10× 20 cm3. Polyethylene
(CH2) and graphite (C) were used as targets. The target was sandwiched by five
1 cm thick plastic scintillator hodoscopes with 5 cm granularity in the z (beam)
direction. Two sets of 25 NaI detectors were placed below and above the target to
measure total energy of charged particles. Each NaI has dimensions of 6.5×6.5×30
cm3. In front of these NaI detectors, 1 cm thick plastic scintillators were placed to
identify charged particles. In order to reduce number of background events, more
than one charged particle hit in the decay counter was required. In particular, KL

produced at the target by the (K−, K̄0) reaction was suppressed to a negligible level.
In the following, we consider only spectra obtained with this hit requirement.

The peak positions of the p(K−, p)K− and p(K−, n)K0 reactions with protons
in the CH2 target were used to check the momentum calibration and momentum
resolution of the KURAMA spectrometer and of the TOF, respectively. The observed
yields are consistent with the cross sections of both the p(K−, p)K− and p(K−, n)K0

reactions,30) within ∼ 20%. The observed cross section of 12C(K−, N) is normalized
to these yields below.

The missing mass spectra of the 12C(K−, n) and 12C(K−, p) reactions with the
graphite target are shown in Fig. 1. Here, the horizontal axis corresponds to the mass
of kaonic nuclei MKN , represented by the binding energy of K− to the residual nuclei
(R), which are either 11C or 11B. This binding energy is given by −BE = MKN −
(MR + MK−). The scattering angles (θsc) of neutrons and protons were restricted
to value θsc < 4.1◦, which is much narrower than the experimental acceptance in
order ensure that the acceptance has no momentum dependence. We studied the
effect of the hit requirement on the spectrum shape by using the 12C(K−, p) reaction
which has no KL induced backgrounds. We found that the ratio of the coincidence
spectrum to the inclusive one depends little on the binding energy. We can thus
assume that spectrum shape is not affected by requiring coincidence.31)

Here we discuss possible backgrounds. The two-nucleon absorption K− + N +
N → Y + N in a nucleus yields an energetic nucleon in the forward direction. This
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Fig. 15. (a) Template fit result by adding a Breit–Wigner function. The orange hatched spectrum displays the
Breit–Wigner component. The green dashed line shows the calculated spectrum with the optical potential of
(V0, W0) = (−80, −40) MeV. The other color assignments are the same as in Fig. 11. (b) Magnified view of (a)
for the small cross section region.

Moreover, we examine other background processes of one-step two-nucleon absorption and two-
step three-nucleon absorption. Appendix D describes the details. Similar discussions are also given
in Ref. [57]. We found that these background processes can also not explain the enhancement in the
deeply bound region.

6.2. Interpretation by introducing an additional resonant state
Since it is not possible to reproduce the event excess in the present framework, we discuss its
possible interpretation. We simply add a Breit–Wigner function in the fitting so as to reproduce
the measured spectrum. Figure 15 shows the fitting result, where the orange hatched spectrum
displays the Breit–Wigner component. The green dotted line shows the theoretical calculation with
the optimum parameter set. The obtained χ2/ndf values with and without the Breit–Winger function
are 9.4 and 31.7, respectively.

Figure 16 shows the two-dimensional χ2 plots as functions of the V0 and W0 parameters.
Figure 16(a) shows the result without a Breit–Wigner function in the fitting region of 40 > BK >

−300 MeV. In this fit, the enhanced deeply bound region is excluded. Figure 16(b) shows the result
including a Breit–Wigner function. The white asterisk shows that the χ2 minimum is found at
(V0, W0) = (−80, −40) MeV. The χ2 distributions are essentially the same. By considering the
χ2 distribution, the statistical uncertainties of V0 and W0 are estimated to be ±2 MeV. Moreover,
the systematic uncertainties, which are evaluated by changing the fitting range and comparing the
results with and without a Breit–Wigner function, as in Fig. 16(a) and (b), are ±5 MeV for V0 and
±10 MeV for W0. The optimum real potential, V0 = −80 MeV, corresponds to the “shallow” poten-
tial predicted by the chiral models as described in Sect. 1. On the other hand, the “deep” potential,
V0 ! −150 MeV, cannot reproduce the measured spectrum.

The peak position and width of the Breit–Wigner function are BK = 90 MeV and " = 100 MeV,
respectively. The statistical uncertainties on the peak position and decay width are less than ±10 MeV.
The production cross section of the Breit–Wigner component is obtained as dσ/d$ ∼ 80 µb sr−1,
where the statistical uncertainty is ±3 µb/sr. The systematic uncertainties calculated by changing the
fitting range are also less than ±10 MeV. By changing the branching ratio between the 1N and 2N
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• By-product of H-dibaryon search. under analysis… 

• Resolution can be potentially improved as good as 1 MeV using S-2S, but 
the acceptance is quite limited.

(K-, p) semi-exclusive in E42
34

K1.8 Beam line spectrometer
Hyperon

Spectrometer

HypTPC
KURAMA

K beam p

figures from Y. Ichikawa

inclusive

conversion

Y*-nucl?

 coin.Λp

Complementary to the measurement 
in wide angular coverage & moderate resolution



• Investigation of heavier systems beyond  has been already started. 

•We observed 4He(K-,Λd)n events, which would be signals of . 

•We are constructing new large solenoid spectrometer 
• large acceptance 
• neutron detection capability  
• additional forward counter would be useful 

• Kaonic systems to be investigated includes 
•  (J-PARC E80) 

•  via  

•  via  

•  via 

K̄NN

K̄NNN

K̄NNN → Λd, Λpn, πΣd, . . .

K−α 6Li(K−, d)

K−αd 7Li(K−, n)

K−αα 9Be(K−, n)

Summary
35
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