Experimental study of the $\bar{K}NNN$ state and beyond at J-PARC

Tadashi Hashimoto (JAEA ASRC) for the J-PARC E73/T77/E80 collaboration

October 12th, 2023

Outline

- 1. Status on *K*NNN
- 2. Preliminary result of $K^- + {}^4 \text{He} \rightarrow \Lambda + d + n$
- 3. Future detailed investigation of the $\bar{K}NNN$ (J-PARC E80)
- 4. Possible strategy to study heviear kaonic nuclei beyond $\bar{K}NNN$

- Exclusive measurement of all the final state particles in a wide q region
- We have found a way to effectively observe a kaonic nucleus

Need further investigation

to establish kaonic nuclei

• ∧(1405) state

- $\bar{K}N$ qusi-bound state as considered?
- Relation between $ar{K}N$ and $ar{K}NN$

• Further details of the $ar{K}NN$

- Spin and parity of the "K-pp"
- Really compact and dense system?

• Heavier kaonic nuclei

- Mass number dependence
- Interplay between $\bar{K}N$ & NN
- Modification of clustering in core nuclei
- Double kaonic nuclei?
 - Much compact and dense system?

KNNN: Theoretical situaion

Larger binding than $\bar{K}NN$ and similar width are predicted.

Not a complete list. sorry…

KNNN: Experimental situaion

- Some experimental searches in 2000s. No conclusive result.
- multi-N absorptions hide bound-state signals in Stop-K

Preliminary result of the *KNNN* search

Our approach

Use in-flight (K⁻,n) reaction, just as successful J-PARC E15

Adn event selection

only 3-day data!

deuteron ID

Λ reconstruction

Missing neutron ID

 Adn final states are identified with a good purity by considering kinematical & topological consistensies

. ~20% contamination from $\Sigma^0 dn / \Sigma^- dp$

before acceptance correction

E15: $\Lambda p (\sim 42 \times 10^9 K^{-})$

Two disributions are quite similar

Model functions

from T. Yamaga's slide

- From E15 functions, simply shift the mass by 1 nucleon mass
- Shapes of the "quasi-free" and "broad" distributions are fixed by E15 results.

- The binding energy is compatible with some theoretical predictions
- " $\bar{K}NN$ " system might have larger binding than " $\bar{K}NN$ ", although we expect a large systematic error 10~20 MeV.
- Experimental width is larger than theoretical predictions.

Status on *KNNN*

- The isospin of the observed state is uniquely assinged as I = 0 from the its decay to $\Lambda(I = 0) d(I = 0)$, but how about spin-parity?
 - JP=1/2- assuming all the consistuents are in S-wave $\bar{K}NNN~(I=0,~J^p=1/2^-)$
 - $\Sigma^*NN \ (I = 0, J^p = 3/2^+)$ possibility still remains
- We need more data
 - to compare with $\bar{K}NN$ in E15
 - . to study other decay mode: $\bar{K}NNN \rightarrow \Lambda pn, \pi \Sigma d, \pi \Sigma pn, \cdots$
 - peak position, branching ratio,…
 - I=1 component could be contaminated
 - to study I=1 state via (K⁻, p) reaction

Further experiment on *K̄NNN* (J-PARC E80)

J-PARC E80 with a new spectrometer

- x3 longer CDC: solid angle 59%→93%
- · 3-layer barrel NC: neutron efficiency 3%→15%

Acceptance for $K^- + {}^4 \text{He} \rightarrow \Lambda d + n$

large kinematical-region coverage & x2 acceptance

Expected spectrum @ 90 kW x 3 weeks

• We expect x40 Adn events

Improvement in resolution with VFT

- Z-vertex resolution ~7mm \rightarrow ~1mm
- x2 better momentum & mass resolution

Λ/Σ^0 separation might be possible

MC with VFT

- Resotluion would be improved ~40 MeV \rightarrow ~ 25 MeV

. We expect different structure in $m_{\Sigma^0 d}$ (I=1) because $\bar{K}NN \rightarrow \Lambda d$ (I=0)

Acceptance for $K^- + {}^4 \text{He} \rightarrow \Lambda pn + n$

- x10 acceptance compared with E15 setup
- Still, one order of magnitude smaller compared with Λdn

Expected spectra

@ 3 weeks, 90kW

Clear peak would be observed for both modes
Peak positions etc. should be carefully compared

Spacial information $\bar{K}NNN \rightarrow \Lambda pn$ decay

P. Kienle et al., Physics Letters B 632 (2006) 187–191

• If $\bar{K}NN \rightarrow \Lambda pn$ is 2NA process, spectator momentum would reflect the system size.

However, we cannot detect low-momentum protons…

Heviear systems

Predictions

[Y. Kanada-En'vo				
	$\frac{1}{10} = \frac{1}{10} $			present	
	EPJA 57, 185 (2021)			set-I	set-II
	$\nu_N ~({\rm fm}^{-2})$			0.16	0.25
	kaonic nuclei (J^{π}, T)				
	$\bar{K}NNNN(0^-, 1/2)$	B.E.	(MeV)	60.8	93.2
		R_N	$_N$ (fm)	1.77	1.41
		$R_{\bar{K}}$	$_N$ (fm)	2.17	1.73

	Properties of the	roperties of the $\frac{4}{\bar{K}}$ He system with $J^{\pi} = 0^{-}$.			
$_{\bar{K}}^{4}$ He(0 ⁻)	Ку	Kyoto			
	Type I	Type II			
B (MeV)	67.9	72.7	85.2		
Γ (MeV)	28.3	28.3 74.1			
TABLE VI. Properties of the ${}^4_{\bar{K}}$ H system with $J^{\pi} = 0^-$.					
$^{4}_{\bar{\nu}}H(0^{-})$	Кус	Kyoto			
K	Type I	Type II			
B (MeV)	69.6	75.5	87.4		
Γ (MeV)	28.0	74.5	87.2		

S. Ohnishi et al. PRC 95, 065202 (2017).

TABLE VIII. Properties of the ${}^{6}_{\bar{K}}$ Li system with $J^{\pi} = 0^{-}$.

${}^{6}_{\bar{v}}\text{Li}(0^{-})^{-}$	Ку	AY		
K	Type I	Type II		
B (MeV)	69.8	69.8 79.7		
Γ (MeV)	23.7 75.6		88.0	
TABLE IX. P	roperties of the	$J^{\pi}=0^{-}.$		
6 He(0 ⁻)	Ку	AY		
$\bar{K}^{\Pi C(0)}$	Type I	Type II		
B (MeV)	70.6	80.0	103	
Γ (MeV)	23.9	75.5	88.0	
TADIEV Pr	operties of the	$\frac{6}{K}$ Li system with	$J^{\pi} = 1^{-}.$	
${}^{6}_{\bar{K}}\text{Li}(1^{-})^{=}$	Ky	AY		
A –	Type I	Type II		
B (MeV)	70.8	77.5	92.9	
Γ (MeV)	26.4	75.2	88.0	
TABLE XI. Properties of the ${}^6_{\bar{K}}$ He system with $J^{\pi} = 1^-$.				
6 -He(1 ⁻)	Ку	AY		
<i>K</i> (1)	Type I	Type II		
B (MeV)	72.8	80.7	95.6	
Γ (MeV)	26.0	75.6	88.5	

- Exclusive analysis by detecting all the decay product becomes more and more difficult with increasing mass number.
- Instead, detect forward knock-out nucleons with hyperon tag

- Exclusive analysis by detecting all the decay product becomes more and more difficult with increasing mass number.
- Instead, detect forward knock-out nucleons with hyperon tag

(K⁻, N) at forward angle E15 semi-inclusive E15 exclusive (Λpn) PTEP 2015, 061D01 (2015). Phys.Rev.C102,044002(2020) 160 $q_{_X} \le 0.3 \text{ GeV/c}$ $0.3 < q_{\chi} \le 0.6 \text{ GeV/c}$ Y-decav BG Semi-inclusive (a) (b)subtracted $(nb/(MeV/c^2))$ ³He(K⁻, n)X 🕂 data 120 100 80 60 60 θ_n=0 fit total ا²∂/dΩ/dM ×. M(Kpp) $- \overline{K}NN \rightarrow \Lambda p$ $\overline{K}N \rightarrow \overline{K}N$ $\cdots \overline{K}NN \rightarrow \Sigma^0 p$ backscattering – quasi-free (on-shell) $X_{40}^{X_{40}}$ broad 40 20 / 2.4 2.6 *M_X* [GeV/*c*²] 2.0 2.8 2.2 3.0 bound state??

- In semi-inclusive spectrum at forward angle, we clearly see the quasi-free peak but cannot isolate the bound state.
- . The situation does not change in Λpn exclusive analysis

Possible setup

- large-q region would be better to isolate the bound state.
- Wide angular acceptance to study q-dependence.

Possible setup

- large-q region would be better to isolate the bound state.
- Wide angular acceptance to study q-dependence.

Expected resolution

	Lтоғ (m)	time resolution (ps)	mass resolution (MeV)
E15 NC	14	150	10
Сар	2	100	50
Forward	7	150	20

Expected resolution

	Ltof (m)	time resolution (ps)	mass resolution (MeV)
E15 NC	14	150	10
Сар	2	100	50
Forward	7	150	20

- Moderate resolution ~50 MeV can be improved to <20 MeV with a kinematic fit.
- Reasonable resolution to identify missing nucleon ~50 MeV

(K-, N) vs. (K-, d)

- momentum transfer is large in (K⁻,d)
- no clear signal of quasi-elastic process ${}^{3}\text{He}(K^{-}, d)$

Other merits with the forward counter

- We can reconstruct full reaction kinematics without detecting one of the decay particle
 - neutral paritcle
 - low-momentum proton. (cf. spectator in decay)

$$K^{-} + {}^{3} \operatorname{He} \to \overline{K}NN + n \to \pi \Sigma p_{s} + n \qquad \qquad K^{-} + {}^{4} \operatorname{He} \to \overline{K}NNN + n \to \begin{cases} \Lambda p n_{s} + n \\ \Lambda n p_{s} + n \end{cases}$$

Useful to analyze decay kinematics and to understand background processes

(K⁻, N) on Carbon

"Semi"-Inclusive Prog. Theor. Phys 118, 181 (2007).

The situation is similar to what we observed with a helium-3 target

1.8 GeV/c

p(K⁻,p)K⁻ n(K⁻,n)K⁻ p(K⁻,n)K⁰

ڻ ک

 $(K^-, N) \ @ \ \theta_N = 0^\circ$

6

mb/sr 4 c

3

2

(K-, p) semi-exclusive in E42

figures from Y. Ichikawa

- By-product of H-dibaryon search. under analysis \cdots
- Resolution can be potentially improved as good as 1 MeV using S-2S, but the acceptance is quite limited.

Complementary to the measurement in wide angular coverage & moderate resolution

Summary

- Investigation of heavier systems beyond $\bar{K}NN$ has been already started.
- We observed 4 He(K-, Λd)n events, which would be signals of $\overline{K}NNN$.
- We are constructing **new large solenoid spectrometer**
 - large acceptance
 - neutron detection capability
 - additional forward counter would be useful
- Kaonic systems to be investigated includes
 - . *K̄NNN* → Λd , Λpn , $\pi \Sigma d$, . . . (J-PARC E80)
 - $K^-\alpha$ via ${}^6\text{Li}(K^-, d)$
 - $K^-\alpha d$ via $^7\text{Li}(K^-, n)$
 - $K^-\alpha\alpha$ via ${}^9\text{Be}(K^-, n)$

Collaboration

J-PARC E73/T77 collaboration

T. Akaishi¹, H. Asano², X. Chen⁵, A. Clozza⁷, C. Curceanu⁷, R. Del Grande⁷, C. Guaraldo⁷, C. Han⁵, T. Hashimoto⁴, M. Iliescu⁷, K. Inoue¹, S. Ishimoto³, K. Itahashi², M. Iwasaki², Y. Ma², M. Miliucci⁷, R. Murayama², H. Noumi¹, H. Ohnishi¹⁰ S. Okada², H. Outa², K. Piscicchia^{7,9}, A. Sakaguchi¹, F. Sakuma², M. Sato³, A. Scordo⁷, K. Shirotori¹, D. Sirghi^{7,8}, F. Sirghi^{7,8}, S. Suzuki³ K. Tanida⁴, T. Toda¹, M. Tokuda¹, T. Yamaga², X. Yuan⁵, P. Zhang⁵, Y. Zhang⁵, H. Zhang⁶

¹Osaka University, Toyonaka, 560-0043, Japan ²RIKEN, Wako, 351-0198, Japan ³High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan ⁴Japan Atomic Energy Agency, Ibaraki 319-1195, Japan ⁵Institute of Modern Physics, Gansu 730000, China ⁶School of Nuclear Science and Technology, Lanzhou University, Gansu 730000, China ⁷Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy ⁸Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Magurele, Romania ⁹CENTRO FERMI - Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, 00184 Rome, Italy

¹⁰Tohoku University, 982-0826, Sendai, Japan

J-PARC E80 collaboration

RIKEN

H. Asano K. Itahashi, M. Iwasaki, Y. Ma, R. Murayama, H. Outa, F. Sakuma*, T. Yamaga RIKEN Cluster for Pioneering Research, RIKEN, Saitama, 351-0198, Japan

K. Inoue, S. Kawasaki, H. Noumi, K. Shirotori Research Center for Nuclear Physics (RCNP), Osaka University, Osaka, 567-0047 Japan

H. Ohnishi, Y. Sada, C. Yoshida Research Center for Electron Photon Science (ELPH), Tohoku University, Sendai, 982-0826. Japan

> T. Hashimoto Japan Atomic Energy Agency (JAEA), Ibaraki 319-1195, Japan

M. Iio, S. Ishimoto, K. Ozawa, S. Suzuki High Energy Accelerator Research Organization (KEK), Ibaraki, 305-0801, Japan

T. Akaishi Department of Physics, Osaka University, Osaka, 560-0043, Japan

KEK

T. Nagae Department of Physics, Kyoto University, Kyoto, 606-8502, Japan

H. Fujioka Department of Physics, Tokyo Institute of Technology, Tokyo, 152-8551, Japan

M. Bazzi, A. Clozza, C. Curceanu, C. Guaraldo, M. Iliescu, M. Miliucci, A. Scordo, D. Sirghi, F. Sirghi Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy

P. Buehler, M. Simon, E. Widmann, J. Zmeskal Stefan-Meyer-Institut für subatomare Physik, A-1090 Vienna, Austria

