Study of mesonic decay of KNN using J-PARC E15 data Takumi Yamaga (RIKEN)

for the J-PARC E15 collaboration

ECT* workshop (2023.10.9–13)

$$I_{\bar{K}N} = 0 \quad \frac{1}{\sqrt{2}} \left(-K^- p + \bar{K}^0 n \right) \quad \begin{array}{l} \text{Strong} \\ \text{attractive} \end{array}$$

$$I_{\bar{K}N} = 1 \quad \frac{\bar{K}^0 p}{\frac{1}{\sqrt{2}} \left(K^- p + \bar{K}^0 n \right)} \quad \text{attractive}$$

KN interaction

Possible to make quasi-bound state with $I_{\bar{K}N} = 0$

The lightest \overline{K} -nucleus

$$\overline{K} N$$

$$\overline{K} N$$

$$J^{\pi} = 1^{-1}$$

$$-\sqrt{\frac{1}{4}} [\overline{K}N]^{I=0}N + \sqrt{\frac{3}{4}} [\overline{K}N]^{I=1}N$$

No theoretical study doubts the existence of $\bar{K}NN$, but predicted *BE* & Γ highly depend on model.

L. Tolos & L. Fabbietti, Prog.Part.Nucl.Phys. 112 (2020) 103770

BE = 9 - 95 MeV $\Gamma = 16 - 110 \text{ MeV}$

We conducted an experimental search for *KNN* @ J-PARC (E15 experiment)

To select Λpn final state To measure Λp invariant-mass & momentum transfer

J-PARC E15

Exclusive Invariant-mass spectroscopy

J-PARC E15

Detector system Forward spectrometer n Cylindrical detector system

J-PARC E15

6

Purity of the Λpn final state ~ 80 %

Obtained 2D distribution

7

 $m_{\bar{K}} + 2m_N$

Obtained 2D distribution $m_{\bar{K}} + 2m_N$ \overline{K}_{OF} -forward Mass of $d_{\Lambda p}$ (GeV/c) having at rest momentum q $= \sqrt{4m_N^2 + m_{\bar{K}}^2 + 4m_N\sqrt{m_{\bar{K}}^2 + q^2}}$ 0.4 Quasi-free \bar{K} absorption 0.2 d^2 Korbackward (nb, 2.3 2.4 2.5 2.6 2.7 2.9 2.2 2.1 2.8 $m_{\Lambda p} \; (\text{GeV}/c^2)$

Obtained 2D distribution $m_{\bar{K}} + 2m_N$ \overline{K}_{OF} -forward Mass of 1.2 d_{Np} (GeV/C) having at rest momentum q $= \sqrt{4m_N^2 + m_{\bar{K}}^2 + 4m_N\sqrt{m_{\bar{K}}^2 + q^2}}$ 0.4 Quasi-free \bar{K} absorption 0.2 d^2 Korbackward (nb, 2.3 2.4 2.5 2.6 2.7 2.9 2.2 2.1 2.8 $m_{\Lambda p} \; (\text{GeV}/c^2)$

Obtained 2D distribution

 $m_{\bar{K}} + 2m_N$

Mass and Width of KNN Γ BE 100 ± 7 (stat.) $^{+19}_{-9}$ (syst.) MeV

J-PARC E15 PRC 102 (2020) 044002

 42 ± 3 (stat.) $^{+3}_{-4}$ (syst.) MeV

Theoretical predictions with chiral SU(3) based \overline{KN} interaction

S. Ohnishi et al., Phys. Rev. C 95 (2017) 065202 26 – 28 MeV

N. Shevchenko, Few-Body Syst. 61 (2020) 27

29 – 30 MeV

A. Dote et al., Phys. Lett. B 784 (2018) 405

14 – 59 MeV

- $46 47 \,\,{\rm MeV}$
- 16 38 MeV

Mass and Width of KNN Γ BE 100 ± 7 (stat.) $^{+19}_{-9}$ (syst.) MeV 42 ± 3 (stat.) $^{+3}_{-4}$ (syst.) MeV

J-PARC E15 PRC 102 (2020) 044002

Consistent in Exp > Theor on

S. Ohnishi et al., Phys. Rev. C 95 (2017) 065202 26 – 28 MeV

N. Shevchenko, Few-Body Syst. 61 (2020) 27

29 – 30 MeV

A. Dote et al., Phys. Lett. B 784 (2018) 405

14 – 59 MeV

31 – 59 MeV

$46 - 47 \,\,{\rm MeV}$

16 – 38 MeV

BE

J-PARC E15 PRC 102 (2020) 044002

S. Ohnishi et al., Phys. Rev. C 95 (2017) 065202 26 – 28 MeV

N. Shevchenko, Few-Body Syst. 61 (2020) 27

29 – 30 MeV

A. Dote et al., Phys. Lett. B 784 (2018) 405

14 – 59 MeV

Theoretical predictions with chiral SU(3) based \overline{KN} interaction

- $46 47 \,\,{\rm MeV}$
- 16 38 MeV

BE

J-PARC E15 PRC 102 (2020) 044002

S. Ohnishi et al., Phys. Rev. C 95 (2017) 065202 26 – 28 MeV

N. Shevchenko, Few-Body Syst. 61 (2020) 27

29 – 30 MeV

A. Dote et al., Phys. Lett. B 784 (2018) 405

14 - 59 MeV

Theoretical predictions with chiral SU(3) based $\overline{K}N$ interaction

31 – 59 MeV $46 - 47 \,\,{\rm MeV}$ 16 – 38 MeV

* Mesonic decay width only

$\frac{\bar{K}NN}{\bar{K}}$

1N absorption

Non-mesonic

2N absorption

in stopped- K^- experiments

Non-mesonic / mesonic ratio

Target

d

p

⁴He

100% mesonic

Nucl. Phys. B 33, (1971) 493.

Nucl. Phys. B **139**, (1978) 61.

~ 1 %

 $\sim 20\%$

Phys.Rev.D1, (1970) 1883.

Phys.Rev.D1, (1970) 1267.

theoretical calculation

theoretical calculation

Fractions

theoretical calculation

T. Sekihara et al., Phys. Rev. C 86 (2012) 065205

0.5	Fliys. J	
0.5	Nonmesonic	
	$E_K = m_K - 0 \text{ MeV}$	
0.4	$E_{K} = m_{K} - 10 \text{ MeV}$	
	$E_K = m_K - 20 \text{ MeV}$	
	$E_K = m_K - 30 \text{ MeV}$	<u> </u>
0.3	$E_K = m_K - 40 \text{ MeV}$	<u> </u>
	$E_K = m_K - 50 \text{ MeV}$	
0.2	-	
0.1		
0		
(0.05	

Fractions

theoretical calculation

T. Sekihara *et al.*, Phys. Rev. C 86 (2012) 065205

Fractions

Calculated decay width of $\bar{K}NN$

M. Bayar and E. Oset, Phys. Rev. C 88 (2013) 044003

S. Ohnishi, et al., Phys. Rev. C 88 (2013) 025204.

 $\Gamma_{YN} \ll \Gamma_{\pi YN}$

$$\Gamma_{YN} \sim 30 \text{ MeV}$$

 $\Gamma_{\pi YN} \sim 40 - 50 \text{ MeV}$

Fraction \propto (Internal structure) \otimes (\overline{KN} interaction)

1N absorption

2N absorption

Fraction \propto (Internal structure) \otimes (\overline{KN} interaction)

1N absorption

2N absorption

"K⁻pp" Ī N

Non-mesonic

"K-*pp"* Ī N

Non-mesonic

"K-*pp"* \overline{K} N

Non-mesonic

Mesonic $\pi^+ \Lambda n$ $\pi^0 \Lambda p$ $\pi^0 \Sigma^+ n \qquad \pi^+ \Sigma^- p$

"K-*pp"* Ī N

Non-mesonic

Mesonic

Event selection

Event selection

Similar but not clear peak below $m_{\bar{K}} + 2m_N$ due to the phase space

0.6		0.6 π^+
0.4		0.4
$= \frac{0}{4\pi} (G = \frac{1}{2} $	$\frac{2}{2} \frac{2m^2}{6} = \frac{1}{2} \frac{1}{2}$	$2.^{\circ} \begin{array}{c} 0 \\ 2.2 \\ \end{array}$
GeV	0.8 0.6 0.4 0.2	GeV
$2 \frac{1}{2} $	$ \begin{array}{c} 0 \\ 2.2 \\ n \\ \hline \\ 1 \\ 0.5 \\ \end{array} \end{array} $	$q_{\pi\Sigma p}$
$\frac{1}{d^2}\sigma/dmdq \text{ (nb)}$	$d^2 \sigma/dh$	-1 $\int \frac{1}{2} \frac{1}{2}$
$m_{\pi^+\Lambda n}^{2.4} (GeV/c^2) 0^{2.8} 0$	$ \begin{array}{c} {}^{0} 2.2 & 2.4 \\ 2.4 & {}^{m} \\ 2.5 & {}^{m} \\ 3.8 & {}^{2.6} \\ 2.6 \\ 2.6 \\ 1 \\ C \\ 2.6 \\ C \\ C \\ 2.6 \\ C \\ C \\ 2.6 \\ C \\ 2.6 \\ C \\ C \\ 2.6 \\ C \\ $	$2.5 \begin{array}{c} 0 \\ 2.2 \\ m \end{array}$

 $c^{2}d^{2}O(dmdq (nb/(MeV^{2}/c^{3})))$

Fitting πYN distribution with the same model function applied to the Λp distribution

Fitting πYN distribution with the same model function applied to the Λp distribution

Statistical error only

Preliminary $110 \pm 8 \ \mu b$

 $+n_{\rm miss}$

 $\pi^+\Lambda n$

c.f. $\Lambda p + n_{\text{miss}}$

Preliminary $38 \pm 3 \ \mu b$

Preliminary $62 \pm 11 \ \mu b$

 $9.3 \pm 0.8^{+1.4}_{-1.0} \ \mu b$

Statistical error only

Preliminary $110 \pm 8 \ \mu b$

 $\pi^+\Lambda n$

c.f. $\Lambda p + n_{\text{miss}}$

 $+n_{\rm miss}$

Preliminary $38 \pm 3 \ \mu b$

Preliminary $62 \pm 11 \ \mu b$

 $9.3 \pm 0.8^{+1.4}_{-1.0} \ \mu b$

 $\Gamma_{\pi^+\Lambda n} \sim \Gamma_{\pi^+\Sigma^\pm p}$

 $\Gamma_{\pi^+ \Lambda n} \sim \Gamma_{\pi^{\mp} \Sigma^{\pm} p}$

 $\Gamma_{\pi^{+}\Lambda n} \sim \Gamma_{\pi^{\mp}\Sigma^{\pm}p}$

T. Sekihara *et al.*, Nucl. Phys. A 914 (2013) 338

"K-*pp"* Ī N

Non-mesonic

Mesonic

Ī N

Non-mesonic

Mesonic $\pi^0 \Lambda n$ $\pi^{-}\Lambda p$ $\pi^{-}\Sigma^{+}n$ $\mathbf{\cap}$ $\pi^0 \Sigma^- p \int \pi^+ \Sigma^- n$

" \bar{K}^0 '**nn**" \overline{K} N \mathcal{N}

Non-mesonic $\Sigma^0 n$ Λn $\Sigma^{-}p$ Mesonic $\pi^0 \Lambda n$ $\pi^{-}\Lambda p$

$\bar{K}NN$ production by ³He(K^- , N) reaction

Direct 2NA observed in $\pi^-\Lambda pp'$

Missing proton has only fermi momentum.

> The events-concentration produced by the direct-2NA process 2 2.4 2.6 $m_{\pi^-\Sigma^+p}$ (GeV/c²)

2.8

K⁻-beam is less likely absorbed by (*pp*)-pair compared to (*pn*)-pair.

Fitting the $\pi^- \Lambda p$ distribution with the same model functions.

Fitting the $\pi^- \Lambda p$ distribution with the same model functions.

"K-*pp"*

Preliminary $110 \pm 8 \ \mu b$

Preliminary $38 \pm 3 \ \mu b$

 $\pi^+\Lambda n$ $+n_{\rm miss}$

Preliminary $62 \pm 11 \ \mu b$

 $"\bar{K}^0nn"$

Preliminary $29 \pm 3 \mu b$

 $\pi^{-}\Lambda p$

 $\sigma_{\bar{K}^0nn}/\sigma_{K^-pp} \sim 1/2$ if we assume $BR_{\pi^+\Lambda n} = BR_{\pi^-\Lambda p}$

– Study of mesonic decay of $\overline{K}NN$ using J-PARC E15 data –

- * We measured three mesonic decay channel of " K^-pp ". * $\pi^{\mp}\Sigma^{\pm}p$ & $\pi^{+}\Lambda n$ channels
- * Branching ratios were obtained to be
 - * $\Gamma_{\pi YN} / \Gamma_{YN} \sim \mathcal{O}(10)$: Mesonic decay is dominant.
 - * $\Gamma_{\pi\Lambda N} \sim \Gamma_{\pi\Sigma N}$: $I_{\bar{K}N} = 1 \bar{K}$ -absorption in $\bar{K}NN$ would be significant.
- * We measured a mesonic decay channel of " $\bar{K}^0 nn$ ". * $\pi^- \Lambda p$ channel
- (*pp*)-pair compared to (*pn*)-pair.

* Can K^- be probe of internal structure (clustering) of nuclei? Need more study.

- * Ratio of production cross sections of $\bar{K}^0 nn \& K^- pp$ was obtained to be * $\sigma_{\bar{K}^0nn}/\sigma_{K^-pp} \sim 1/2$ (by assuming branching ratio of $\pi\Lambda N$ is the same for $\bar{K}^0nn \& K^-pp$)
- * Need to do / Open questions
 - * Measuring all of other decay modes of $\overline{K}NN$
 - * Connection between branching ratio and internal structure of $\bar{K}NN$
 - * Why is $I_{\bar{K}N} = 1$ absorption significant in the $\bar{K}NN$ decay ? Is it related to the internal structure of $\bar{K}NN$?
 - * Measuring "non-mesonic decay" of $\bar{K}^0 nn$ (such as Λn) to observe a clear signal (peak).

* The direct-2NA process was observed only in the $\pi^- \Lambda pp'$ channel not in the $\pi^+ \Lambda nn'$ channel, which indicates K^- -beam is less likely absorbed by

Thank you for your attention!

= Collaboration =

T. Hashimoto, K. Tanida

Theorists	
Tokyo Tech D. Jido	
T. Sekihara	