

J-PARC (K1.8BR) における K中間子原子核研究の状況と展望

橋本 直 (JAEA ASRC) for the J-PARC E15/T77/E80 collaboration

December 6-7, 2022 @ ELPH, Sendai

Meson in nuclei

meson: quark-antiquark (ar q q) pair

- In nuclei, mesons are viatual particles and form nuclear potential (Yukawa theorem)
- In vacuum, mesons are real particles having own intrinsic masses (cf. meson beam)

Can meson be a constituent particle forming nuclei?
 If yes, how do meson and core nucleus change?

We would like to experimentally establish such exotic nuclei

Kaonic nuclei

- Strong attraction in I=0 from scattering and X-ray experiements.
- $\Lambda(1405) = \overline{K}N$ molucle picture is now widely accepted Why not kaonic nucleus with additional nucleons?

The simplest one: $\overline{KNN}(I = 1/2, J^P = 0^-)$

- Theoretical calculations agree on the existence of $\bar{K}NN$, but B.E. and Γ depend on the $\bar{K}N$ interaction models.
- No conclusive experimental evidence so far.

Mass number dependence

$$\bar{K}NNN \quad I(J^p) = 0(1/2^{-})$$

Not a complete list. sorry…

AY: PRC65(2002)044005, PLB535(2002)70. WG: PRC79(2009)014001. BGL: PLB712(2012)132. OHHMH: PRC95(2017)065202.

Larger binding than $\bar{K}NN$ and similar width are predicted.

KNNN: Experimental situaion

- Some experimental searches in 2000s. No conclusive result.
- multi-N absorptions hide bound-state signals in Stop-K

Our approach: in-flight (K-, n)

- K⁻ beam at 1 GeV/c to maximize elementary (K⁻, N) cross sections
- Most of background processes can be kinematically separated.
 - Hyperon decays and multi-nucleon absorption reactions
- Simplest target allow exclusive analysis.

J-PARC K1.8BR

Relatively short beamline suitable for low-momentum K⁻ beam

E15/E31@K1.8BR

beam dump

beam sweeping magnet

liquid ³He target system

CDS

neutron counter charge veto counter proton counter

beam line spectrometer

Experiments @ J-PARC K1.8BR

- E15: $\overline{K}NN$ search
 - 1st data taking in 2013: forward-neutron PTEP (2015) 061D01, Λp PTEP (2016) 051D01.
 - 2nd data taking in 2015 focusing on Λp : PLB 789 (2019) 620, PRC 102 (2020) 044002.
- E31: $\Lambda(1405)$ spectroscopy via $d(K^-, n)$
 - data taking in 2018: <u>arXiv:2209.08254</u>
- E57: Kaonic hydrogen/deuterium 1s with SDDs
 - test experiment in 2019
- E62: Kaonic helium-3/4 2p with TES
 - data taking in 2018: PRL 128, 112503 (2022).
- E73/T77: lifetime measurement of light hypernuclei
 - test data in 2020(4He), 2021(3He)
- E80: $\bar{K}NNN$ study
- P89: *ĒNN* spin-parity

K-pp

$\bar{K}NN \ln {^{3}He(K^{-}, \Lambda p)n}$

PHYSICAL REVIEW C 102, 044002 (2020)

Observation of a $\overline{K}NN$ bound state in the ³He(K^- , Λp)n reaction

T. Yamaga,^{1,*} S. Ajimura,² H. Asano,¹ G. Beer,³ H. Bhang,⁴ M. Bragadireanu,⁵ P. Buehler,⁶ L. Busso,^{7,8} M. Cargnelli,⁶ S. Choi,⁴ C. Curceanu,⁹ S. Enomoto,¹⁴ H. Fujioka,¹⁵ Y. Fujiwara,¹² T. Fukuda,¹³ C. Guaraldo,⁹ T. Hashimoto,²⁰ R. S. Hayano,¹² T. Hiraiwa,² M. Iio,¹⁴ M. Iliescu,⁹ K. Inoue,² Y. Ishiguro,¹¹ T. Ishikawa,¹² S. Ishimoto,¹⁴ K. Itahashi,¹ M. Iwai,¹⁴ M. Iwasaki,^{1,†} K. Kanno,¹² K. Kato,¹¹ Y. Kato,¹ S. Kawasaki,¹⁰ P. Kienle,^{16,‡} H. Kou,¹⁵ Y. Ma,¹ J. Marton,⁶ Y. Matsuda,¹⁷ Y. Mizoi,¹³ O. Morra,⁷ T. Nagae,¹¹ H. Noumi,^{2,14} H. Ohnishi,²² S. Okada,²³ H. Outa,¹ K. Piscicchia,^{24,9}
Y. Sada,²² A. Sakaguchi,¹⁰ F. Sakuma,¹ M. Sato,¹⁴ A. Scordo,⁹ M. Sekimoto,¹⁴ H. Shi,⁶ K. Shirotori,² D. Sirghi,^{9,5} F. Sirghi,^{9,5} S. Suzuki,¹⁴ T. Suzuki,¹² K. Tanida,²⁰ H. Tatsuno,²¹ M. Tokuda,¹⁵ D. Tomono,² A. Toyoda,¹⁴ K. Tsukada,¹⁸ O. Vazquez Doce,^{9,16} E. Widmann,⁶ T. Yamazaki,^{12,1} H. Yim,¹⁹ Q. Zhang,¹ and J. Zmeskal⁶ (J-PARC E15 Collaboration)

 Λpn event selection

PID in CDS

 $Mass^2 (GeV/c^2)^2$

-1.0

- *Λpn* events are selected with ~80% purity.
- . ~20% $\Sigma^0 pn/\Sigma^- pp$ contamination

Obtained spectrum in J-PARC E15

 q_r : momentum transfer to Λp system

Model functions

+ Broad component

2D Fit for the " $\bar{K}NN$ " state

 $0.3 < q_x < 0.6$ GeV/c: Signals are well separated from other process

$\overline{KNNN} \text{ in } {}^{4}\text{He}(K^-, \Lambda d)n$

Helium-4 data with the E15 setup as a test experiment in 2020

J-PARC E15 vs T77 @ K1.8BR

We already have small dataset with ⁴He target

J-PARC E15@2015 42G K⁻ on **³He**

J-PARC T77@2020

6G K⁻ on 4He only 3 days!

• The same cylindrical detector system ${}^{4}\text{He}(K^{-}, \pi^{0})^{4}_{\Lambda}\text{H}$ + forward calorimeter in T77 for lifetime measurements of hypernuclei

Adn event selection

deuteron ID

CDC track curvature & CDH time of flight

Λ reconstruction

w/ vertex consistency cutw/ pipd missing mass cut

Missing neutron ID

w/ vertex consistency cutw/ lambda mass cut

- Adn final states are identified with a good purity by considering kinematical & topological consistensies
- ~20% contamination from $\Sigma^0 dn/\Sigma^- dp$

KNNN: Preliminary result

- Two disributions are quite similar
- structure below the threshold, QF-K⁻, and broad background

19

р

KNNN: Preliminary result

Preliminary result

- The binding energy is compatible with theoretical predictions
- " $\bar{K}NN$ " system might have larger binding than " $\bar{K}NN$ ", although we expect a large systematic error 10~20 MeV.
- Expereimental width is larger than theoretical predictions.

Comparison with Sekihara calc.

- Good agreement in the mass spectrum.
 (although it failed to explain experimental q spectrum)
- Detailed comparison with theoretical spectrum is important

What's next?

Now we know how to produce "kaonic nuclei" !

Determine spin-parity of the observed KNN state (J-PARC P89)
 Spin-spin correlation for the observed KNN state (J-PARC P89)

or $\Sigma^*N [I(J^p) = 1/2(2^+)]$

- Confirm $\bar{K}NNN \ [I(J^p) = 0(1/2^-)]$ and study its property (J-PARC E80) $\bar{K}^{0}pn\bar{K}^$
 - Λpn in addition to the Λd decay mode

 $\sum_{\bar{K}^{0}nn} \sum_{\bar{K}^{0}nn} \sum_{\bar{K}^{0}nn} \sum_{\bar{K}^{0}nn} [I(J^{p}) = 0(3/2^{+})]$ possibility should be considered

Heaviear kaonic nuclei, doulbe kaonic nuclei, …

J-PARC E80 with a new spectrometer new CDS

E15 CDS

- About 10 times volume
- •We got a large budget, 特別推進 (P.I.: M. Iwasaki, JFY2022—JFY2026)

New spectrometer

- x3 longer CDC: solid angle 59%→93%
- 3-layer barrel NC (CNC): neutron efficiency 3%→15%
 - polalimeter trackers between CNCs in future
- VFT to improve z-vertex & momentum resolution

Acceptance

large kinematical-region coverage & better acceptance

Expected yields

 $N = \sigma \times N_{beam} \times N_{target} \times \epsilon,$ $\epsilon = \epsilon_{DAQ} \times \epsilon_{trigger} \times \epsilon_{beam} \times \epsilon_{fiducial} \times \Omega_{CDS} \times \epsilon_{CDS},$

- N_{beam} = **100 G** K- on target
 - MR beam power of 90 kW
 - <u>3 weeks</u> data taking (90% up-time)

 $\sigma(K^-ppn) \bullet Br(\Lambda d) \sim 5 \mu b$ $\sigma(K^{-}ppn) \bullet Br(\Lambda pn) \sim 5 \ \mu b$

from the T77 preliminary result and an assumption

- N(K-ppn $\rightarrow \Lambda d$) ~ 1.2 x 10⁴
- N(K-ppn $\rightarrow \Lambda$ pn) ~ 1.5 x 10³
 - c.f. 1.7 x 10³ "K-pp" $\rightarrow \Lambda p$ accumulated in E15-2nd (40 G K⁻)

Λ d / Λpn
5 μb
100 G X ~20
2.56 x 10 ²³
0.92
0.98
0.72
0.23 / 0.059 🗙 🔶
0.6 / 0.3
12 k / 1.5 k
-

 \checkmark ~ 40 times more $\land d$ events than existing data in T77

 \checkmark Similar number of Λpn events to Λp in E15

Expected spectra

@ 3 weeks, 90kW

V Clear peak would be observed for both modes

Heavier systems

- Deuteron knock-out reaction has a larger momentum transfer
 - \rightarrow We would like test in E80: ⁶Li(K⁻,d)"K⁻ α ", ⁴He(K⁻,d)"K^{0bar}nn"
- Larger decay particle (like α) can not be detected by the CDS. many-particle decay modes are also difficult to reconstruct.
 - Forward knocked-out particle spectroscopy at relatively large angle would be an altanative way

-1.0 GeV/c

Schedule

	FY2022				FY2023			FY2024				FY2025				0000~		
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q 1	Q2	Q3	3 Q4		2026
SC Solenoid	De	sign	Pure (SC	chase Wire)	Construction						Installation & Test			u	ning	Sun		
NC	Design Purchase (Scinti.)				Assembly				Test & Commissioning					egrati	missio	/sics F	Analysis & Pblication	
CDC		De	sign		Construction				Test & Commissioning					Int	Com	Phy		
K1.8BR Beam Line	E73(CDC) -> E72(HypTPC) Experiments									Upgrade E80					E80	Experi	ment	

Aiming to complete detector construction in 4 years.

- Superconducting solenoid magnet
- CDC (cylindrical drift chamber)
- CNC (cylindrical neutron counter)
- K1.8BR area modification

We plan to be ready by the end of JFY2025

Summary

- Anti-kaon could be a unique probe for hadron physics.
 We are performing systematic experiments at J-PARC K1.8BR.
- $\overline{K}NN$ signals were observed in ${}^{3}He(K^{-},\Lambda p)n$ channel in J-PARC E15.
- Similar structure found in ${}^{4}\text{He}(K, \Lambda d)n$ events as a by-product of J-PARC T77 would include signals of $\overline{K}NNN$.
- More systematic study from JFY2026 with a new spectrometer
 - $\bar{K}NNN$ confirmation (J-PARC E80)
 - $\overline{K}NN$ spin-parity (J-PARC P89)

Kaonic nuclear state is getting more solid

J-PARC E80/P89 collaboration

• We welcome new collaborators !

RIKEN

Όποκυ

КЕК

Now 1 postdoc position is open at JAEA (deadline: Dec. 23)

Fit result

The whole 2D distribution is well reproduced.

 \rightarrow The reaction could be understood as \overline{KNN} production & quasi-free process

Forward neutron semi-inclusive spectrum

