Systematic investigation of kaonic nuclei at J-PARC

Takumi Yamaga (RIKEN)

Hadron Experimental Facility extension (HEF-ex) workshop (2022.02.16 – 18)

Skip introduction

Studies of \overline{K} -nuclei @ J-PARC so far

Search

$$\bar{K}NN$$
 b
Bound
anti-kaon a
 $\left[\bar{K}_{I=\frac{1}{2}}\right]$
 $I_{\bar{K}NN}^{(z)} = + 1/2$
 $_{(K^-pp - \bar{K}^0pn)}$
 $I_{\bar{K}NN}^{(z)} = - 1/2$
 $_{\bar{K}NN}^{(\bar{K}^0nn - \bar{K}^-pn)}$

 K^-pp production is occurred by intermediate \bar{K} .

Result of E15

40 broad 20 Result of E15

40 broad 20 Result of E15

E15 result & Theor. calc. are consistent. The most natural interpretation is that the peak is a signal of K^-pp .

E15 result & Theor. calc. are consistent. The most natural interpretation is that the peak is a signal of K^-pp .

11

Understanding of the larger Q_{K^-pp} will provide information of system size.

Comparison between E15 & E27

2.6

2.6

The (K^-, π^-) reaction can be similarly used.

E31 : $p_K = 1 \text{ GeV}/c$ (Study for $\Lambda(1405)$ by the (K^- , n) reaction)

P90 : $p_K = 1.4 \text{ GeV}/c$ (Study for ΣN cusp by the (K^- , π^-) reaction)

Results with the (K^-, π^-) reaction will come in the future.

Momentum transfer in each reaction

 $n(\pi^+, K^+)Y^*$

Wide q-region is covered.

 $n(K^{-}, \pi^{-})Y^{*}$

Measurement is done with different detector systems.

 $N(K^-, n)K$

J-PARC HEF is suitable & unique facility to study for kaonic nuclei.

https://j-parc.jp/researcher/Hadron/en/pac_2007/pdf/LoI_2020-08.pdf

Another possibility to study *K*⁻*pp*

 Λp scattering @ High-p beam-line

p_{Λ} : 1.2 – 1.5 GeV/c is region of interest. Enough yield is expected.

Moreover,

Parity might be determine by angular dist.

Internal structure of K⁻pp

Although the most natural interpretation is K^-pp ,

 $N_R = 2 \& S = -1$ possibilities are $K^-pp \& Y^*N$

The internal structure of K⁻pp will confirmed with systematic investigation.

To confirm existence of \overline{K} -nuclei more robustly Systematic study for \overline{K} -nuclei

To confirm internal structure of \overline{K} -nuclei More careful study for K^-pp

(our) Future plan of systematic investigation

Existence of heavier kaonic nuclei

The next lightest system, K⁻ppn

Internal structure of \overline{K} -nuclei

What we need to investigate

Existence of isospin partner of observed *K*⁻*pp*

 $\bar{K}^0 nn$

 $\bar{K}NNN$ (I=0) \bar{K}^{0} - $\bar{}^{3}$ H K^{--3} He $J^{P} = 1/2^{-1}$

Spin and parity (next page)

Internal structure & spin-parity

There are two possible J^P as for the $\bar{K}NN$ ground state.

* Positive parity state should be higher excited state if exist.

with CurrentCDSP92Search for
$$K^-ppn \rightarrow \Lambda d$$

Dedicated to observe K⁻ppn from its two-body decay

 $(K^-ppn \rightarrow \Lambda d \rightarrow p\pi^- d)$

with NewCDS (next page)

24

Reaction mechanism can be confirmed with $\sim 4\pi$ spectrometer

K1.8BR beam-line modification plan **Planned modification**

New programs for kaonic nuclei

– Further investigation of $\bar{K}NN$ & Searching for lighter & heavier systems –

How to measure $\bar{K}^0 nn / K^- ppn$

How to produce/detect $K^-pp / \overline{K}^0 nn / K^-ppn$

We would observe distinct peaks of $\bar{K}^0 nn \rightarrow \Lambda n/\Sigma^- p$

 (c^{2})

 K^-ppn can be reconstructed by both $\Lambda pn / \Lambda d$ decay modes.

Expected spectra of K⁻ppn

How to determine J^P of K^-pp

How to determine J^P

 $-\Lambda p \text{ spin-spin correlation } (\alpha_{\Lambda p}) \text{ in } K^- pp \rightarrow \Lambda p \text{ decay } -$

How to measure spin-spin correlation

by *p*-C scat. asym.

– Spin alignment measurement by $\Lambda \rightarrow p\pi^- \& p$ -C scattering –

Spin-spin correlation on ϕ -asymmetry $N(\phi_{\Lambda p}) = N_0 \cdot (1 + r^{(J^P)} \cdot \alpha_{\Lambda p} \cos \phi_{\Lambda p})$ $r^{(J^P)}$: asymmetry reduction factor defined by; $\alpha_{-}: \Lambda$ asym. parameter B: Magnetic field A_{pC} : Analyzing power $B_{\bar{K}}$: Binding energy

 $f_{\overrightarrow{S}_{A}}$: Spin distribution q : Momentum transfer

We can observe $\alpha_{\Lambda p}$ from $\phi_{\Lambda p}$ -distribution.

Expected spectra

We would exclude $J^P = 1^-$ with 95% confidence level from only $\phi_{\Lambda p}$ -asym.

– To measure $\phi_{\Lambda p}$ -asymmetry for J^P determination –

J-PARC HEF is suitable & unique facility to study for kaonic nuclei.

Summary

with CurrentCDS
P92 Search for
$$K^-ppn \rightarrow \Lambda d$$

Dedicated to observe K⁻ppn from its two-body decay

 $(K^-ppn \rightarrow \Lambda d \rightarrow p\pi^- d)$

with NewCDS (next page)

37

Reaction mechanism can be confirmed with $\sim 4\pi$ spectrometer

Thank you for your attention!

= Collaboration =

	Theorists —
noto, K. Tanida	
Г. Nagae	Tokyo Tech D. Jido
nu, C. Guaraldo, M. D. Sirghi, F. Sirghi	T. Sekihara
Shi, M. Tuechler, In, J. Zmeskal	