Kppのスピン・パリティィ測定と $\bar{K}^{0} n n$ の探索

－Measurement of spin and parity of $K^{-} p p$ and searching for $\bar{K}^{0} n n-$ 20213／12－15「日本物理学会（春）」

山我 拓巳（理化学研究所）
浅野秀光，橋本直 ${ }^{A}$ ，岩崎雅彦，馬越，村山理恵，野海博之 ${ }^{B, C}$ ，大西宏明 ${ }^{\mathrm{D}}$ ，佐久間史典

Brief introduction of $\bar{K} N N$ state

- Exotic bound state resulting strong attractive $\bar{K} N$ interaction -

$\bar{K} N N$ bound state

The simplest kaonic nucleus system
Bound system of anti-kaon and two nucleons
$\left[\bar{K}_{I=\frac{1}{2}}(N N)_{I=1}\right]_{I=\frac{1}{2}}$
$K^{-} p p$

$\mathrm{lz}=+1 / 2$
$\left(K^{-} p p-\bar{K}^{0} p n\right)$
$\bar{K}^{0} n n$
n 椹 n
$\mathrm{zz}=-1 / 2$
$\left(K^{-} p n-\bar{K}^{0} n n\right)$

The existence of $K^{-} p p$ has been confirmed.

New programs for kaonic nuclei

- Further investigation of $\bar{K} N N \&$ Searching for lighter \& heavier systems -

New detector system

Super conducting coil

- Large acceptance cylindrical detector system -

* Barrel counters
* Large CDC
* Tracking of charged-particles
* CVC + Layered-NC + Tracker
* Charged-particles \& Neutron detection
* Polarimeter
* Forward \& Backward counters
* CVC + NC
* Charged-particles \& Neutron detection
* Room to install γ-detector

What we will measure

- To determine J^{P} of $K^{-} p p$ \& To search for $\bar{K}^{0} n n-$

To determine J^{P} of $K^{-} p p$
Spin-spin correlation in $K^{-} p p \rightarrow \Lambda p$ decay
If $K^{-} p p$ is 0^{-}state;

* P-wave decay
* Spins of Λ \& proton to be parallel

Reference axis
\vec{L}

To search for $\bar{K}^{0} n n$ Invariant-mass of Λn \& Momentum transfer to Λn
$\bar{K}^{0} n n$ would be observed with 8 weeks beam.

Spin-spin correlation in $K^{-} p p \rightarrow \Lambda p$ decay

Spin-spin correlation between Λ \& proton would have J^{P} information.

$$
\vec{S}_{\Lambda} \cdot \vec{S}_{p} \equiv \alpha_{\Lambda p}
$$

Possible spin-parity of $K^{-} p p$

- Assuming all particles are in S-wave -

Parity of $K^{-} p p$ is negative. Spin of $K^{-} p p$ is equivalent to NN spin.

If NN is spin-singlet

$$
S_{N N}=0, I_{N N}=1
$$

NN must be isospin-triplet

Expected to be strong binding

$$
\left.<I_{\bar{K} N}=0\right\rangle:\left\langle I_{\bar{K} N}=1\right\rangle=3: 1
$$

If NN is spin-triplet

$$
S_{N N}=1, I_{N N}=0
$$

NN must be isospin-singlet

Expected to be weak binding

$$
\left.<I_{\bar{K} N}=0\right\rangle:\left\langle I_{\bar{K} N}=1\right\rangle=1: 3
$$

Expected spin-spin correlation

$$
J_{K-p p}^{P}=0^{-}
$$

NN is spin-singlet \& isospin-triplet.

NN is spin-triplet \& isospin-singlet.

$$
L_{\Lambda p}=1
$$

Expected spin-spin correlation

$$
J_{K-p p}^{P}=0^{-}
$$

NN is spin-singlet \& isospin-triplet.

$$
J_{K-p p}^{P}=1^{-}
$$

NN is spin-triplet \& isospin-singlet.

Spin non-flip dominant $\alpha_{\lambda p} \rightarrow+1$

$$
\frac{\alpha_{\Lambda p}=-1 / 3}{\text { Naive estimation }}
$$

How to measure spin-spin correlation

- Measuring spin directions using asymmetries of $\Lambda \rightarrow p \pi^{-}$decay \& p-C scattering -

Expected result of $\alpha_{\Lambda p}$ measurement

- Estimation by Geant4 based Monte Carlo simulation -

$N(\phi) \propto 1+r \cdot \alpha_{\Lambda p} \cdot \cos \phi$

* Expected result by Geant4 based MC simulation
* Event generation with 0^{-}hypothesis
* Number of events can be used;
~ 300 events / week
* $\sigma_{K^{-} p p} \cdot \mathrm{BR}_{\Lambda p}=9.3 \mu \mathrm{~b}$ (measured value by E15)
* $\mathscr{L}=2.8 \mathrm{nb}^{-1} /$ week
(@ 90kW beam-power)
* $\Omega_{C D S} \sim 15 \%$
(@ barrel-part of CDS including analysis efficiency)
* $\varepsilon_{p \mathrm{C}} \sim 10 \%$
(with $5 \mathrm{~cm} \times 3$ layers scintillators as a "scattering target")
* The result with 12 weeks beam-time
1^{-}would be rejected with 8 weeks beam.

Summary

- Measurement of spin and parity of $K^{-} p p$ and searching for $\bar{K}^{0} n n-$

To determine J^{P} of $K^{-} p p$
Spin-spin correlation in $K^{-} p p \rightarrow \Lambda p$ decay
1^{-}would be rejected with 8 weeks beam.

To search for $\bar{K}^{0} n n$ Invariant-mass of Λn \& Momentum transfer to Λn
$\bar{K}^{0} n n$ would be observed with 8 weeks beam.

Backup

New programs for kaonic nuclei

- Further investigation of $\bar{K} N N \&$ Searching for lighter \& heavier systems -

Lighter system

$\bar{K} N N$ system J^{P} determination To confirm the existence more robustly

$$
\Lambda(1405)
$$

with wider q-region

$$
\begin{gathered}
d\left(K^{-}, n\right) \text { reaction } \\
\pi^{ \pm} \Sigma^{\mp} \text { decay } \\
\&
\end{gathered}
$$

$\pi^{0} \Sigma^{0}$ decay as well
Measuring $d \sigma / d q \& \alpha_{\Lambda p}$

$$
\begin{array}{cc}
\text { Search for } \bar{K}^{0} n n & \text { Relation to } \Lambda^{*} \\
\text { Isospin-partner of } K^{-} p p & \text { Production mechanism of } \\
\bar{K}^{0} n n \rightarrow \Lambda n \text { decay } & \bar{K} N \& \bar{K} N N \\
\text { Large } \Gamma & \text { Decay branch } \\
\text { Large branch } & \text { Non-mesonic } \\
\text { to non-mesonic } & \Lambda p, \Sigma^{0} p, \Sigma^{+} n \\
\text { or substructure } & M e s o n i c \\
& \pi \Lambda N, \pi \Sigma N
\end{array}
$$

Heavier system
P80 $\bar{K} N N N$ system
Door to heavier system
${ }^{4} \mathrm{He}\left(K^{-}, N\right)$ reaction

$$
K^{-} p p n(\mathrm{I}=0) \quad K^{-} p p p / \bar{K}^{0} n n n(\mathrm{I}=1)
$$

$\bar{K} N N N N$ system
Expected large B.E. \& high density
${ }^{6} \mathrm{Li}\left(K^{-}, d\right)$ reaction

$$
K^{-}-\alpha \quad \bar{K}^{0}-\alpha
$$

$\bar{K} \alpha \alpha$ system
${ }^{9} \mathrm{Be}\left(K^{-}, N\right)$ reaction

Background for $\bar{K}^{0} n n$ searching

How to measure spin-spin correlation

- Measuring spin directions using asymmetries of $\Lambda \rightarrow p \pi^{-}$decay \& p-C scattering -

What we will measure

- To determine J^{P} of $K^{-} p p$ \& To search for $\bar{K}^{0} n n-$

To determine J^{P} of $K^{-} p p$
Spin-spin correlation in $K^{-} p p \rightarrow \Lambda p$ decay
If $K^{-} p p$ is 0^{-}state;

* P-wave decay
* Spins of Λ \& proton to be parallel

Reference axis
\vec{L}

To search for $\bar{K}^{0} n n$ Invariant-mass of Λn \& Momentum transfer to Λn

$$
K^{-}+3 \mathrm{He} \rightarrow \bar{K}^{0} n n+p
$$

Production ratio between $\bar{K}^{0} n n$ \& $K^{-} p p$

- To estimate production cross section of $\bar{K}^{0} n n-$

$$
\text { Assuming } \sigma_{\bar{K} N N} \propto A \sigma_{\bar{K} N} \times C_{N N}^{2} \times C_{\bar{K} N N}^{2}
$$

(A; Effective nucleon number, $\sigma_{\bar{K} N}$; Elementary cross-section, $C_{N N} \& C_{\bar{K} N N}$; Clebsch-Gordan coeffic.)

$\begin{array}{cc}\text { If }\left|I_{p n}>=\right| 1,0>; & \text { If }\left|I_{p n}>=\right| 0,0>; \\ \bar{K}^{0} n n \rightarrow 0^{-} & \bar{K}^{0} n n \rightarrow 1^{-} \\ \sigma_{\bar{K}^{0} n n} \propto A_{p} \sigma_{K^{-} p} \times \frac{1}{2} \times \frac{1}{3} & \sigma_{\bar{K}^{0} n n} \propto A_{p} \sigma_{K^{-} p} \times \frac{1}{2} \times 1\end{array}$

$$
\left(\begin{array}{cc}
\text { If }\left|I_{p n}>=\right| 1,0>; & \text { If }\left|I_{p n}>=\right| 0,0>; \\
K^{-} p p \rightarrow 0^{-} & \bar{K}^{0} n n \rightarrow 1^{-} \\
\sigma_{K^{-} p p} \propto A_{p} \sigma_{\bar{K}_{n}} \times \frac{1}{2} \times \frac{1}{3} & \sigma_{K-p p} \propto A_{p} \sigma_{\bar{K}^{0} n} \times \frac{1}{2} \times 1
\end{array}\right.
$$

$K^{-} p p$ production

$K^{-} p p$ production by $K^{-} n \rightarrow K^{-} n$ $\left(\sigma_{K^{-} n} \sim 4.7 \mathrm{mb} / \mathrm{sr} @ \theta_{n}=0^{\circ}\right)$

$$
\left|I_{p p}>=\right| 1,+1>;
$$

$$
K^{-} p p \rightarrow 0^{-}
$$

$$
\sigma_{K-p p} \propto \sigma_{K-n} \times 1 \times \frac{2}{3}
$$

Measurement of spin-spin correlation of $\Lambda \&$ proton

Decay of $K^{-} p p$

- Assuming $J^{P}=0^{-}$-

$$
\begin{aligned}
& I_{\Lambda}=0, J_{\Lambda}^{P}=\frac{1}{2}^{+} \\
& I_{p}=\frac{1}{2}, J_{p}^{P}=\frac{1^{+}}{2}
\end{aligned}
$$

$$
\begin{gathered}
I_{K^{-}}=\frac{1}{2}, J_{K^{-}}^{P}=0^{-} \\
I_{p p}=1, J_{p p}^{P}=0^{+}
\end{gathered}
$$

P-wave decay; $L_{\Lambda p}=1$
$S_{\Lambda p}=1$ to make $J=0$
Λ \& proton are not polarized, but their spins are correlated.

We consider spin-spin correlation between Λ \& proton.

$$
\vec{S}_{\Lambda} \cdot \vec{S}_{p} \equiv \alpha_{\Lambda p}
$$

Expected spin-spin correlation

$$
J_{K-p p}^{P}=0^{-}
$$

NN is spin-singlet \& isospin-triplet.

To make negative parity

$$
\operatorname{L}_{\Lambda_{p}}=1
$$

To make total $J=0$

NN is spin-triplet \& isospin-singlet.

$$
L_{\Lambda p}=1
$$

Both are possible.

Expected spin-spin correlation

$$
J_{K-p p}^{P}=0^{-}
$$

NN is spin-singlet \& isospin-triplet.

$$
J_{K \text { PD }}^{P}=1^{-}
$$

NN is spin-triplet \& isospin-singlet.

$$
\alpha_{\Lambda p}=?
$$

$$
\alpha_{\Lambda p} \rightarrow \pm 0
$$

$\alpha_{\Lambda p} \rightarrow+1$

Estimation of the accuracy

- Overview -

Spin-spin correlation; $\alpha_{\Lambda p}$

$$
\alpha_{\Lambda p}=\frac{N_{+}-N_{-}}{N_{+}+N_{-}} \cdot \frac{2}{r} \quad r \equiv \alpha_{-} \cdot\left\langle A_{\mathrm{C}}\right\rangle \cdot\langle | \vec{S}_{p} \times \vec{p}_{p}| \rangle
$$

* Statistical error;

$$
\text { Slope: } \alpha_{\Lambda_{p}} \cdot \alpha_{-} \cdot\left\langle A_{\mathrm{C}}\right\rangle \cdot\langle | \vec{S}_{p} \times \vec{p}_{p}| \rangle
$$

$\Delta \alpha_{\Lambda p}=\frac{2}{\alpha_{-} \cdot\left\langle A_{\mathrm{C}}\right\rangle \cdot\langle | \vec{S}_{p} \times \vec{p}_{p} \mid>} \cdot \frac{1}{\sqrt{N_{+}+N_{-}}}$

* $\alpha_{-} \sim 0.7$ (well known)
* $<A_{\mathrm{C}}>,<\left|\vec{S}_{p} \times \vec{p}_{p}\right|>$, and number of scattering events should be studied.
* Systematic error;
* Good reference to evaluate systematic
* Proton polarization in $\Lambda \rightarrow p \pi^{-}$decay
* To be discussed later

Estimation of the accuracy

- Numbers of $K^{-} p p \rightarrow \Lambda p$ \& p - C scattering -

* Number of $K^{-} p p \rightarrow \Lambda p$ to be detected
* $N_{K-p p}^{d e t} \sim 3000 /$ week
* Cross section of $K^{-} p p$:
$\sigma_{K^{-} p p} \cdot \mathrm{BR}_{\Lambda p}=9.3 \mu \mathrm{~b}$ (measured value)
* Expected luminosity:
$\mathscr{L}_{\text {week }}=2.8 \mathrm{nb}^{-1} /$ week
(estimation with 90 kW beam-power)
* Acceptance including analysis efficiency: $\sim 15 \%$ (proton detected by barrel-part of new CDS)
* Number of p-C scattering
* $N_{\text {total }}=N_{+}+N_{-} \sim 300$ events/week
* $5 \mathrm{~cm} \times 3$ layers plastic-scintillators used as "scattering target"
* Reaction rate : $\sim 3 \%$ of all incident proton per one 5 cm -plasticscintillator (Estimated by Geant4 based MC simulation)

Estimation of the accuracy

- Analyzing power -

* Analyzing power of carbon taken from Ref.
* Peak around $T_{P}=0.2 \mathrm{GeV}$
* Momentum distribution of proton
* Simulated by MC
* with 5 cm thickness plastic scintillator
* $6^{\circ}<\theta_{p}^{\text {scat }}<30^{\circ}$ selected
* Similar to A_{C} shape
* Average : $\left\langle A_{\mathrm{C}}\right\rangle \sim 0.4$

Estimation of the accuracy

- Transverse component of proton spin -

* Large transverse component is expected.
* better to measure
* Small difference between S \& P wave decay

$$
\begin{aligned}
& *<\left|\vec{S}_{p} \times \vec{p}_{p}\right|>\sim 0.8 \\
& \quad \text { (S-wave decay) }
\end{aligned}
$$

$$
*<\left|\vec{S}_{p} \times \vec{p}_{p}\right|>\sim 0.9
$$

(P-wave decay)

Estimation of the accuracy

- The accuracy \& Necessary beam-time to determine J^{P} -

* If we assume $\alpha_{\Lambda p}= \pm 0$;
* J^{P} would be determined with ~ 13 weeks
* Proton detected by barrel part of the new CDS
* With 90 kW beam power $\& 5 \mathrm{~cm} \times 3$ layers plastic scintillator
* If $\alpha_{\Lambda p} \rightarrow-1$;
* J^{P} determination becomes easy.
* within a month beam-time
* If $\alpha_{\Lambda p} \rightarrow+1$;
* Need other way...

Distinguish between $0^{-} \& 1^{+}$

- Momentum transfer dependence of S \& P -wave states -

* Differential cross section should be different:
* $\propto \exp \left(-\frac{q^{2}}{Q^{2}}\right)$ for S-wave state
* $\propto \frac{q^{2}}{Q^{2}} \exp \left(-\frac{q^{2}}{Q^{2}}\right)$ for P-wave state
* We need to subtract BG from other reaction.
* Especially, higher q region has large BG contamination.
* Systematic uncertainty should be considered carefully.
* CS dependence must be considered more carefully.
* Simple PWIA may be invalid.
* We need to discuss with theoretician to derive the realistic CS dependence.

Production cross-sections of

$$
K^{-} p p \& \bar{K}^{0} n n
$$

Production of $K^{-} p p$

Involved by

Production of $K^{-} p p$

Involved by
elastic $K^{-} n \rightarrow K^{-} n$ reaction

$$
\begin{gathered}
\sigma_{K^{-n \rightarrow K} K^{-n}} \sim 4.7 \mathrm{mb} / \mathrm{sr} \\
\text { at } \theta_{n}=0^{\circ}
\end{gathered}
$$

Involved by

from $\mid 1 / 2+\quad$ To make $I_{N N}=\mid 0>$
from $|1 / 2,+1 / 2>\otimes| 1 / 2,-1 / 2>$ from $|1 / 2,+1 / 2>\otimes| 1 / 2,-1 / 2>$

Production of $\bar{K}^{0} n n$

Production of $\bar{K}^{0} n n$

Production ratio between $K^{-} p p \& \bar{K}^{0} n n$

Production ratio between $K^{-} p p \& \bar{K}^{0} n n$

*Assuming effective proton number $=2$

$\bar{K}^{0} n n$ production in $K^{-}+4$ He reaction

$K^{-}+4 \mathrm{He} \rightarrow \bar{K}^{0} n n+d$ reaction

- Another possibility to distinguish $0^{-} \& 1^{-}$-

$K^{-}+4 \mathrm{He} \rightarrow \bar{K}^{0} n n+d$ reaction
- Production ratio between ${ }^{3} \mathrm{He}\left(K^{-}, p\right) \&{ }^{4} \mathrm{He}\left(K^{-}, d\right)$ -

$$
\sigma_{\bar{K}^{0} n n} \text { in }{ }^{3} \mathrm{He}\left(K^{-}, p\right): \sigma_{\bar{K}^{0} n n} \text { in }{ }^{4} \mathrm{He}\left(K^{-}, d\right)
$$

Momentum transfer of ${ }^{3} \mathrm{He}\left(K^{-}, p\right) \&{ }^{4} \mathrm{He}\left(K^{-}, d\right)$

