K-ppのスピン・パリティ測定と R⁰nnの探索

山我 拓巳 (理化学研究所) 浅野秀光,橋本直^A,岩崎雅彦,馬越,村山理恵,野海博之^{B,C},大西宏明^D,佐久間史典 理研, 原研^A, 阪大RCNP^B, KEK^C, 東北大ELPH^D

– Measurement of spin and parity of K^-pp and searching for K^0nn –

2021 3/12-15 「日本物理学会(春)」

New programs for kaonic nuclei

– Further investigation of $\bar{K}NN$ & Searching for lighter & heavier systems –

* Barrel counters

- * Large CDC
 - ***** Tracking of charged-particles
- CVC + Layered-NC + Tracker
 - Charged-particles & **Neutron** detection *
 - Polarimeter *
- * Forward & Backward counters
 - * CVC + NC
 - * Charged-particles & **Neutron** detection
- * Room to install γ -detector

CDC : Cylindrical drift chamber CVC : Charge veto counter NC : Neutron counter

– To determine J^P of K^-pp & To search for \overline{K}^0nn –

To determine J^P of K^-pp Spin-spin correlation in $K^-pp \rightarrow \Lambda p$ decay If *K*⁻*pp* is **0**⁻ state; * P-wave decay * Spins of Λ & proton to be parallel

What we will measure

Spin-spin correlation in $K^-pp \rightarrow \Lambda p$ decay

$$I_{K^{-}} = \frac{1}{2}, J_{K^{-}}^{P} = 0^{-}$$
$$I_{pp} = 1, J_{pp}^{P} = 0^{+}$$

Spin-spin correlation between Λ & proton would have J^P information. $\overrightarrow{S}_{\Lambda} \cdot \overrightarrow{S}_{p} \equiv \alpha_{\Lambda p}$

Possible spin-parity of *K*⁻*pp*

– Assuming all particles are in S-wave –

Parity of K^-pp is negative. Spin of K^-pp is equivalent to NN spin.

Expected spin-spin correlation

Naive estimation

 $\alpha_{\Lambda p} \rightarrow +$

How to measure spin-spin correlation

– Measuring spin directions using asymmetries of $\Lambda o p\pi^-$ decay & p-C scattering –

Expected result of $\alpha_{\Lambda p}$ **measurement**

Estimation by Geant4 based Monte Carlo simulation –

- * Expected result by Geant4 based MC simulation
 - * Event generation with 0^- hypothesis
 - * Number of events can be used; ~ 300 events / week
 - * $\sigma_{K^-pp} \cdot BR_{\Lambda p} = 9.3 \ \mu b$ (measured value by E15)
 - * $\mathscr{L} = 2.8 \text{ nb}^{-1}/\text{week}$ (@ 90kW beam-power)
 - * $\Omega_{CDS} \sim 15\%$ (@ barrel-part of CDS including analysis efficiency)
 - * $\varepsilon_{pC} \sim 10\%$ (with 5cm x 3 layers scintillators as a "scattering target")
 - The result with 12 weeks beam-time *

1⁻ would be rejected with 8 weeks beam.

Summary

– Measurement of spin and parity of K^-pp and searching for \bar{K}^0nn –

----- To determine J^P of K^-pp Spin-spin correlation in $K^-pp → \Lambda p$ decay 1[−] would be rejected with 8 weeks beam. 1.2^{8 weeks beam-time} Simulation Expected data (0[−] hypothesis)</sup>

New programs for kaonic nuclei

– Further investigation of $\overline{K}NN$ & Searching for lighter & heavier systems –

Heavier system KNN system J^P determination KNNN system To confirm the existence Door to heavier system more robustly $^{4}\text{He}(K^{-}, N)$ reaction Measuring $d\sigma/dq \& \alpha_{\Lambda p}$ $K^{-}ppn$ (I=0) $K^{-}ppp/\bar{K}^{0}nnn$ (I=1) Relation to Λ^* KNNNN system Production mechanism of Expected large B.E. & high density $\bar{K}N \& \bar{K}NN$ ⁶Li(K^- , d) reaction Decay branch $ar{K}^0$ -lpha $K^{-}-\alpha$ Non-mesonic $\Lambda p, \Sigma^0 p, \Sigma^+ n$ $\bar{K}\alpha\alpha$ system Mesonic $^{9}\text{Be}(K^{-}, N)$ reaction $\pi \Lambda N, \pi \Sigma N$

$$J^{P} = 1^{-}$$

$$P - wave defined as a constraint of the second state of the second s$$

spin • spin correlation:

$$\alpha_{\Lambda p} = -\frac{2}{3} + \frac{1}{3}$$

3

same for other S_{pn} direction

Background for \bar{K}^0 *nn* **searching**

How to measure spin-spin correlation

18

– Measuring spin directions using asymmetries of $\Lambda \to p\pi^-$ decay & p-C scattering –

r ; scaling factor including α_{-} , $A_{\rm C}$ etc.

– To determine J^P of K^-pp & To search for \overline{K}^0nn –

To determine J^P of K^-pp Spin-spin correlation in $K^-pp \rightarrow \Lambda p$ decay If K^-pp is 0^- state; * P-wave decay * Spins of Λ & proton to be parallel

What we will measure

Production ratio between \overline{K}^0 *nn* **&** K^-pp

– To estimate production cross section of $\bar{K}^0 nn$ –

Assuming $\sigma_{\bar{K}NN} \propto A \sigma_{\bar{K}N} \times C_{NN}^2 \times C_{\bar{K}NN}^2$

(A ; Effective nucleon number, $\sigma_{\bar{K}N}$; Elementary cross-section, C_{NN} & $C_{\bar{K}NN}$; Clebsch-Gordan coeffic.) *K*⁻*pp* production *K*⁻*pp* production by $K^- p \rightarrow \bar{K}^0 n$ by $K^-n \to K^-n$ $(\sigma_{\bar{K}^0n} \sim 2.4 \text{ mb/sr} \otimes \theta_n = 0^\circ)$ $(\sigma_{K^-n} \sim 4.7 \text{ mb/sr} \otimes \theta_n = 0^\circ)$ $ar{K}^0$ nn ³He ³He $|I_{pp}\rangle = |1, +1\rangle;$ If $|I_{pn}\rangle = |1, 0\rangle$; If $|I_{pn}\rangle = |0, 0\rangle$; $K^-pp \rightarrow 0^ \sigma_{K^-pp} \propto \sigma_{K^-n} \times 1 \times \frac{2}{3}$

Measurement of spin-spin correlation of Λ & proton

$$I_{K^{-}} = \frac{1}{2}, J_{K^{-}}^{p} = 0^{-}$$

$$I_{pp} = 1, J_{pp}^{p} = 0^{+}$$

$$I_{K^{-}pp} = \frac{1}{2}, J_{K^{-}pp}^{P} = 0^{-}$$

$$I_{K^{-}pp} = 0^{-}$$

Expected spin-spin correlation

Expected spin-spin correlation

– Overview –

Statistical error; $\Delta \alpha_{\Lambda p} = \frac{2}{\alpha_{-} \cdot \langle A_{\rm C} \rangle \cdot \langle |\vec{S}_{p} \times \vec{p}_{p}| \rangle} \cdot \frac{1}{\sqrt{N_{+} + N_{-}}}$ * $\alpha_{-} \sim 0.7$ (well known) * $< A_{\rm C} >$, $< |\overrightarrow{S}_p \times \overrightarrow{p}_p| >$, and number of scattering events should be studied. * Systematic error; * Good reference to evaluate systematic Proton polarization in $\Lambda \rightarrow p\pi^-$ decay To be discussed later

- Numbers of $K^-pp \rightarrow \Lambda p$ & p-C scattering
 - * Number of $K^-pp \rightarrow \Lambda p$ to be detected
 - * $N_{K^-pp}^{det} \sim 3000$ /week
 - * Cross section of K^-pp : $\sigma_{K^-pp} \cdot BR_{\Lambda p} = 9.3 \ \mu b \text{ (measured value)}$
 - * Expected luminosity : $\mathscr{L}_{week} = 2.8 \text{ nb}^{-1}/\text{week}$ (estimation with 90kW beam-power)
 - Acceptance including analysis efficiency : $\sim 15\%$ * (proton detected by barrel-part of new CDS)

*** Number of p-C scattering**

- * $N_{total} = N_+ + N_- \sim 300$ events/week
 - 5 cm x 3 layers plastic-scintillators used as "scattering target"
 - Reaction rate : $\sim 3\%$ of all incident proton per one 5cm-plastic-* scintillator (Estimated by Geant4 based MC simulation)

– Analyzing power –

- * Analyzing power of carbon taken from Ref.
 - * Peak around $T_P = 0.2 \text{ GeV}$
- * Momentum distribution of proton
 - * Simulated by MC
 - with 5cm thickness plastic * scintillator
 - * $6^{\circ} < \theta_p^{scat} < 30^{\circ}$ selected
 - * Similar to $A_{\rm C}$ shape

*** Average :** $< A_{\rm C} > \sim 0.4$

– Transverse component of proton spin –

- * Large transverse component is expected.
 - * better to measure
- * Small difference between S & P wave decay
 - $* < |\vec{S}_p \times \vec{p}_p| > \sim 0.8$ (S-wave decay)
 - $* < |\vec{S}_p \times \vec{p}_p| > \sim 0.9$ (P-wave decay)

– The accuracy & Necessary beam-time to determine J^P –

Spin non-flip dominant

$$\alpha_{\Lambda p} \to \pm 0$$

$$\alpha_{\Lambda p} \rightarrow -1$$

Spin flip dominant

5

* If we assume $\alpha_{\Lambda p} = \pm 0$; 0.2 * J^P would be determined with ~13 weeks 0.1 * Proton detected by barrel part of the new CDS

> With 90kW beam power & 5 cm x 3 layers * plastic scintillator

* If
$$\alpha_{\Lambda p} \rightarrow -1$$
;

* J^P determination becomes easy.

within a month beam-time *

* If
$$\alpha_{\Lambda p} \rightarrow +1$$
;
¹⁰
¹⁰
Need other way...
Beam-time (week)

29

20-0.2

Distinguish between 0⁻ & 1⁺

Momentum transfer dependence of S & P -wave states –

* Differential cross section should be different:

*
$$\propto \exp\left(-\frac{q^2}{Q^2}\right)$$
 for S-wave state
* $\propto \frac{q^2}{Q^2} \exp\left(-\frac{q^2}{Q^2}\right)$ for P-wave state

***** We need to subtract BG from other reaction.

- * Especially, higher q region has large BG contamination.
- * Systematic uncertainty should be considered carefully.

***** CS dependence must be considered more carefully.

- * Simple PWIA may be invalid.
- * We need to discuss with theoretician to derive the realistic CS dependence.

Production cross-sections of $K^-pp \& \bar{K}^0nn$

*Assuming effective proton number = 1

Production of $\bar{K}^0 nn$

Production of \bar{K}^0 *nn*

*Assuming effective proton number = 1

*Assuming effective proton number = 2

\bar{K}^0 nn production in \bar{K}^- + 4He reaction

– Another possibility to distinguish 0^- & 1^- –

 $K^- + 4\text{He} \rightarrow \bar{K}^0 nn + d$ reaction

 $K^- + 4\text{He} \rightarrow \bar{K}^0 nn + d$ reaction – Production ratio between ${}^{3}\text{He}(K^{-}, p) \& {}^{4}\text{He}(K^{-}, d) \sigma_{\bar{K}^0nn}$ in ${}^{3}\text{He}(K^-, p) : \sigma_{\bar{K}^0nn}$ in ${}^{4}\text{He}(K^-, d)$ Spin flip **Comparable**dominant $\sigma_{K^-p}:\frac{1}{2}\sigma_{K^-d}$ $\sigma_{K^-p}:\sigma_{K^-d}$ $3\sigma_{K^{-}p}:0$ $3\sigma_{K^-p}: \frac{1}{2}\sigma_{K^-d}$

Momentum transfer of ${}^{3}\text{He}(K^{-}, p)$ & ${}^{4}\text{He}(K^{-}, d)$

2.8 2.6 4 (GeV/c^2)

3

0.5

