Measurement of spin-spin correlation in K⁻pp decay

– To determine spin-parity of $\bar{K}NN$ –

2021 2/23-24 「日本のスピン物理学の展望」

山我 拓巳 (理化学研究所)

– Exotic nucleus resulting strong attractive $\overline{K}N$ interaction –

KNN bound state

The simplest kaonic nucleus system

Bound system of anti-kaon and two nucleons

$$\left[\bar{K}_{I=\frac{1}{2}} (NN)_{I=1} \right]_{I=\frac{1}{2}}$$

Considered to be $J^{P} = 0^{-1}$

 $I_{NN} = 1, S_{NN} = 0, L_{\bar{K}} = 0$

– Observation of *K*⁻*pp* bound state –

Overview of J-PARC E15 experiment

- * K^-pp production by $K^- + ^3\text{He} \rightarrow \Lambda p + n$ reaction @ J-PARC
 - * Λp invariant-mass (m_X) & momentum transfer (q_X) were measured.
 - * Clear signal of K^-pp was observed.
- * Basic parameters of K^-pp were determined.
 - * Binding energy
 - * Decay width etc.
 - S-wave Gaussian form factor implies that the system would be very small (r~0.6 fm).

New experiment for Kaonic nuclei

$\overline{K}NN$ system

J^P determination

To confirm the existence more robustly

Measuring $d\sigma/dq \& \alpha_{\Lambda p}$

Search for $\bar{K}^0 nn$

Isospin-partner of K⁻pp

 $\bar{K}^0 nn \rightarrow \Lambda n \text{ decay}$

Large Γ

Large branch to non-mesonic or substructure

Relation to Λ^*

Production mechanism of $\bar{K}N \& \bar{K}NN$

Decay branch

Non-mesonic $\Lambda p, \Sigma^0 p, \Sigma^+ n$ Mesonic $\pi \Lambda N, \pi \Sigma N$

– Further investigation of $\overline{K}NN$ & Searching for heavier system –

 $^{9}\text{Be}(K^{-}, N)$ reaction

Possible J^P states

- Schematic drawing of internal configuration of K^-pp
 - * Assuming *NN* in S-wave * If \overline{K} -meson is in **S**-wave:
 - * $J^P = 0^-$ with spin-singlet NN
 - Most probable one *
 - * $J^P = 1^-$ with spin-triplet NN
 - Recently predicted the existence, but expected to be shallow binding (a few MeV)

* If \overline{K} -meson is in P-wave:

* $J^P = 1^+$ with spin-singlet NN

* $J^P = 0^+$ with spin-triplet NN

Production of *K*⁻*pp*

 $-K^{-}$ + ³He reaction involved by elementary $K^{-}N \rightarrow \overline{K}n$ –

Production of *K*⁻*pp*

*
$$\propto \exp\left(-\frac{q^2}{Q^2}\right)$$
 for S-wave state
* $\propto \frac{q^2}{Q^2} \exp\left(-\frac{q^2}{Q^2}\right)$ for P-wave state

– Momentum transfer dependence of S & P -wave states –

What we measure

* Spin-spin correlation between Λ & proton $(\vec{S}_{\Lambda} \cdot \vec{S}_{p} \equiv \alpha_{\Lambda p});$ * Λ -spin ($\overrightarrow{S}_{\Lambda}$) is measured by $\Lambda \rightarrow p\pi^{-}$ decay asymmetry. * Proton spin (\vec{S}_p) is measured by p-C scattering asymmetry.

– Spin observable in $K^-pp \rightarrow \Lambda p$ decay –

Decay of $J^P = 0^-$ state

– P-wave decay ($L_{\Lambda p} = 1$) with parallel spin of Λ & proton ($S_{\Lambda p} = 1$) –

Decay of $J^P = 1^+$ state

- S-wave decay ($L_{\Lambda p} = 0$) with parallel spin of Λ & proton ($S_{\Lambda p} = 1$) -

* $L_{\Lambda p} = 0$ to make positive parity * $S_{\Lambda p} = 1$ to make J = 1* So that, $\alpha_{\Lambda p} = +1$ is expected.

*
$$\overrightarrow{S} \cdot \overrightarrow{p}$$
 is flat.

Expected spin-spin correlation

Decay of $J^P = 1^-$ state

- P-wave decay ($L_{\Lambda p} = 1$) with both $S_{\Lambda p} = 0 \& 1 - 1$

* Both $S_{\Lambda p} = 0 \& 1$ possible * $S_{\Lambda p} = 0$: spin flip * $S_{\Lambda p} = 1$: spin non-flip * If spin flip is dominant: $\alpha_{\Lambda p} \rightarrow -1$ * If **spin non-flip** is dominant: $\alpha_{\Lambda p} \rightarrow +1$ * In other J^P states, always spin flip * If spin flip & spin non-flip are comparable, * $\alpha_{\Lambda p} \rightarrow \pm 0$ (we assume this.)

* Discussion with theoreticians is ongoing.

How to measure spin-spin correlation

13

– Measuring spin directions using asymmetries of $\Lambda o p\pi^-$ decay & p-C scattering –

How to measure spin-spin correlation

– Measuring spin-spin correlation from two spin directions–

Detector system for new experiment

Large acceptance cylindrical detector system –

~ 4 m		
Yoke		
COII		
r rel + Tracker = To measure p-C	scattering	
CDC	NC-capF	
$3U_0$ target		
n no-largel		

m

– Overview –

* Statistical error; $\Delta \alpha_{\Lambda p} = \frac{2}{\alpha_{-} \cdot \langle A_{\rm C} \rangle \cdot \langle |\vec{S}_{p} \times \vec{p}_{p}| \rangle} \cdot \frac{1}{\sqrt{N_{+} + N_{-}}}$ * $\alpha_{-} \sim 0.7$ (well known) * $< A_{\rm C} >$, $< |\overrightarrow{S}_p \times \overrightarrow{p}_p| >$, and number of scattering events should be studied. * Systematic error; * Good reference to evaluate systematic Proton polarization in $\Lambda \rightarrow p\pi^-$ decay To be discussed later

- Numbers of $K^-pp \rightarrow \Lambda p$ & p-C scattering
 - * Number of $K^-pp \rightarrow \Lambda p$ to be detected
 - * $N_{K^-pp}^{det} \sim 3000$ /week
 - * Cross section of K^-pp : $\sigma_{K^-pp} \cdot BR_{\Lambda p} = 9.3 \ \mu b \text{ (measured value)}$
 - * Expected luminosity : $\mathscr{L}_{week} = 2.8 \text{ nb}^{-1}/\text{week}$ (estimation with 90kW beam-power)
 - Acceptance including analysis efficiency : $\sim 15\%$ * (proton detected by barrel-part of new CDS)

*** Number of p-C scattering**

- * $N_{total} = N_+ + N_- \sim 300$ events/week
 - 5 cm x 3 layers plastic-scintillators used as "scattering target"
 - Reaction rate : $\sim 3\%$ of all incident proton per one 5cm-plastic-* scintillator (Estimated by Geant4 based MC simulation)

– Analyzing power –

- * Analyzing power of carbon taken from Ref.
 - * Peak around $T_P = 0.2 \text{ GeV}$
- * Momentum distribution of proton
 - * Simulated by MC
 - with 5cm thickness plastic * scintillator
 - * $6^{\circ} < \theta_p^{scat} < 30^{\circ}$ selected
 - * Similar to $A_{\rm C}$ shape

*** Average :** $< A_{\rm C} > \sim 0.4$

– Transverse component of proton spin –

- * Large transverse component is expected.
 - * better to measure
- * Small difference between S & P wave decay
 - $* < |\vec{S}_p \times \vec{p}_p| > \sim 0.8$ (S-wave decay)
 - $* < |\vec{S}_p \times \vec{p}_p| > \sim 0.9$ (P-wave decay)

– The accuracy & Necessary beam-time to determine J^P –

- $* J^P$ would be determined with reasonable beam-time.
 - **K**-meson in **S**-wave : ~13 weeks
 - **K-meson in P-wave : ~4 weeks**
 - * Assuming $\alpha_{\Lambda p} = \pm 0$ for 1⁻ state
 - Proton detected by barrel part of the new * CDS
 - With 90kW beam power & 5 cm x 3 layers * plastic scintillator

Feasibility study for $\alpha_{\Lambda p}$ measurement

– Measurement of proton polarization in $\Lambda \to p \pi^- \operatorname{decay} -$

* Proton polarization in Λ -decay; $\overrightarrow{P}_{p \text{ from } \Lambda} = \alpha_{-} \cdot \overrightarrow{p}_{p \text{ from } \Lambda}$

* Measuring similar scalar product to $\alpha_{\Lambda p}$ measurement;

$$N\left(\overrightarrow{S}_{\Lambda}^{exp} \cdot \overrightarrow{S}_{p \text{ from } \Lambda}^{exp}\right) \propto 1 + r$$

* $r \equiv \alpha_{-} \cdot \langle A_{C} \rangle \langle | \overrightarrow{S}_{p} \times \overrightarrow{p}_{p} | \rangle$

* Huge number of Λ can be easily obtained.

r & systematic uncertainty would be evaluated precisely.

Summary

* The accuracy of spin-spin correlation measurement was estimated. * J^P of $K^- pp$ would be determined with reasonable beam-time at J-PARC. well as systematic uncertainty. (8 weeks beam-time) 0.8 0.2 0.6 0.4 $q_{\Lambda p} (\text{GeV}/c)$

² = Measurement of spin-spin correlation in K^-pp decay –

- * High statistics momentum transfer dependence would separate $0^{-}/1^{-}$ & $1^{+}/0^{+}$ states.
- * Additional measurement of spin-spin correlation between Λ & proton would determine

Thank you for your attention!