Measurement of

spin－spin correlation in $K^{-} p p$ decay

－To determine spin－parity of $\bar{K} N N-$

2021 2／23－24 「日本のスピン物理学の展望」

山我 拓巳（理化学研究所）

$\bar{K} N$ interaction \& $\bar{K} N N$ bound state

- Exotic nucleus resulting strong attractive $\bar{K} N$ interaction -
$\bar{K} N$ interaction
Strong attractive in $I=0$
I=0 pairs

$$
\mathrm{lz}=+1 / 2
$$

$$
\mathrm{lz}=-1 / 2
$$

\square

(n) \bar{K}^{0}

$\Lambda(1405)$ state

Considered to be $\bar{K} N$-molecule
(${ }^{*} \mathrm{I}=0, \mathrm{JP}=1 / 2^{-}=$

$$
\begin{array}{lll}
K^{-} p p & p K^{-} p & \begin{array}{c}
\mathbf{z z}=+1 / 2 \\
\left(K^{-} p p-\bar{K}^{0} p n\right)
\end{array} \\
\hline \bar{K}^{0} n n & n \bar{K}^{0} n & \begin{array}{c}
\mathbf{z}=-1 / 2 \\
\left(K^{-} p n-\bar{K}^{0} n n\right)
\end{array}
\end{array}
$$

Considered to be $\mathrm{JP}=0$

$$
I_{N N}=1, S_{N N}=0, L_{\bar{K}}=0
$$

Overview of J-PARC E15 experiment

- Observation of $K^{-} p p$ bound state -

* $K^{-} p p$ production by $K^{-}+3 \mathrm{He} \rightarrow \Lambda p+n$ reaction @ J-PARC
* Λp invariant-mass $\left(m_{X}\right) \&$ momentum transfer $\left(q_{X}\right)$ were measured.
* Clear signal of $K^{-} p p$ was observed.
* Basic parameters of $K^{-} p p$ were determined.
* Binding energy
* Decay width etc.
* S-wave Gaussian form factor implies that the system would be very small ($\mathrm{r} \sim 0.6 \mathrm{fm}$).

New experiment for Kaonic nuclei

- Further investigation of $\bar{K} N N \&$ Searching for heavier system -

$\bar{K} N N$ system

J^{P} determination
To confirm the existence
more robustly
Measuring $d \sigma / d q \& \alpha_{\Lambda p}$

Heavier system
$\bar{K} N N N$ system
Door to heavier system
${ }^{4} \mathrm{He}\left(K^{-}, N\right)$ reaction
$K^{-} p p n(\mathrm{I}=0) \quad K^{-} p p p / \bar{K}^{0} n n n(\mathrm{I}=1)$
$\bar{K} N N N N$ system
Expected large B.E. \& high density
${ }^{6} \mathrm{Li}\left(K^{-}, d\right)$ reaction $K^{-}-\alpha \quad \bar{K}^{0}-\alpha$

$\bar{K} \alpha \alpha$ system

${ }^{9} \mathrm{Be}\left(K^{-}, N\right)$ reaction

Possible J^{P} states

- Schematic drawing of internal configuration of $K^{-} p p-$

* Assuming $N N$ in S-wave
* If \bar{K}-meson is in S-wave:
* $J^{P}=0^{-}$with spin-singlet $N N$
* Most probable one
* $J^{P}=1^{-}$with spin-triplet $N N$
* Recently predicted the existence, but expected to be shallow binding (a few MeV)
* If \bar{K}-meson is in P-wave:
* $J^{P}=1^{+}$with spin-singlet $N N$
* $J^{P}=0^{+}$with spin-triplet $N N$

Production of $K^{-} p p$

$-K^{-}+{ }^{3} \mathrm{He}$ reaction involved by elementary $K^{-} N \rightarrow \bar{K} n-$

Production of $J^{P}=0^{-}$
Involved by elastic $K^{-} n \rightarrow K^{-} n$ reaction

Production of $J^{P}=1^{-}$
Involved by charge-exchange $K^{-} p \rightarrow \bar{K}^{0} n$ reaction

* $K^{-} p p$ production involved by elementary $K^{-} N \rightarrow \bar{K} n$ reaction
* By elastic $K^{-} n \rightarrow K^{-} n$
* $J^{P}=0^{-} \& 1^{+}$are produced.
* $\sigma \sim 5 \mathrm{mb}\left(\theta_{n}=0^{\circ}\right)$
* By charge-exchange $K^{-} p \rightarrow \bar{K}^{0} n$
* $J^{P}=1^{-} \& 0^{+}$are produced.
* $\sigma \sim 2.5 \mathrm{mb}\left(\theta_{n}=0^{\circ}\right)$
* $J^{P}=0^{-} \& 1^{+}$production would be favored in $K^{-}+3$ He reaction.

Production of $K^{-} p p$

- Momentum transfer dependence of S \& P -wave states -

Production of $J^{P}=1^{+}$

Differential cross section should be different:

* $\propto \exp \left(-\frac{q^{2}}{Q^{2}}\right)$ for S-wave state
* $\propto \frac{q^{2}}{Q^{2}} \exp \left(-\frac{q^{2}}{Q^{2}}\right)$ for P-wave state

What we measure

- Spin observable in $K^{-} p p \rightarrow \Lambda p$ decay -
* Spin-spin correlation between Λ \& proton ($\vec{S}_{\Lambda} \cdot \vec{S}_{p} \equiv \alpha_{\Lambda p}$);
* Λ-spin $\left(\vec{S}_{\Lambda}\right)$ is measured by $\Lambda \rightarrow p \pi^{-}$decay asymmetry.
* Proton spin $\left(\vec{S}_{p}\right)$ is measured by p-C scattering asymmetry.

Decay of $J^{P}=0^{-}$state

- P-wave decay $\left(L_{\Lambda p}=1\right)$ with parallel spin of $\Lambda \& \operatorname{proton}\left(S_{\Lambda p}=1\right)$ -

* $L_{\Lambda p}=1$ to make negative parity
* $S_{\Lambda p}=1$ to make $J=0$
* So that, $\alpha_{\Lambda p}=+1$ is expected.
* $\vec{S} \cdot \vec{p}=0$ is favored.
* It cannot be measured, but it would makes measured $\alpha_{\Lambda p}$ different from S-wave decay.

Decay of $J^{P}=1^{+}$state

- S-wave decay $\left(L_{\Lambda p}=0\right)$ with parallel spin of $\Lambda \& \operatorname{proton}\left(S_{\Lambda p}=1\right)$ -

* $L_{\Lambda p}=0$ to make positive parity
* $S_{\Lambda p}=1$ to make $J=1$
* So that, $\alpha_{\Lambda p}=+1$ is expected.
* $\vec{S} \cdot \vec{p}$ is flat.

Expected spin-spin correlation

Decay of $J^{P}=1^{-}$state

- P-wave decay $\left(L_{\Lambda p}=1\right)$ with both $S_{\Lambda p}=0 \& 1-$

$$
J^{P}=1^{-}
$$

$$
I_{N N}=0, S_{N N}=1, L_{\bar{K}}=0
$$

Both $S_{\Lambda p}=0 \& 1$ possible

* $S_{\Lambda p}=0$: spin flip
* $S_{\Lambda p}=1$: spin non-flip
* If spin flip is dominant:
$\alpha_{\Lambda p} \rightarrow-1$
* If spin non-flip is dominant:
$\alpha_{\Lambda p} \rightarrow+1$
* In other J^{P} states, always spin flip
* If spin flip \& spin non-flip are comparable,
$*^{*} \alpha_{\Lambda p} \rightarrow \pm 0$ (we assume this.)
* Discussion with theoreticians is ongoing.

How to measure spin-spin correlation

- Measuring spin directions using asymmetries of $\Lambda \rightarrow p \pi^{-}$decay \& p-C scattering -

How to measure spin-spin correlation

- Measuring spin-spin correlation from two spin directions-

Detector system for new experiment

- Large acceptance cylindrical detector system -

Estimation of the accuracy

- Overview -

Spin-spin correlation; $\alpha_{\Lambda p}$

$$
\alpha_{\Lambda p}=\frac{N_{+}-N_{-}}{N_{+}+N_{-}} \cdot \frac{2}{r} \quad r \equiv \alpha_{-} \cdot\left\langle A_{\mathrm{C}}\right\rangle \cdot\langle | \vec{S}_{p} \times \vec{p}_{p}| \rangle
$$

* Statistical error;

$$
\text { Slope: } \alpha_{\Lambda_{p}} \cdot \alpha_{-} \cdot\left\langle A_{\mathrm{C}}\right\rangle \cdot\langle | \vec{S}_{p} \times \vec{p}_{p}| \rangle
$$

$\Delta \alpha_{\Lambda p}=\frac{2}{\alpha_{-} \cdot\left\langle A_{\mathrm{C}}\right\rangle \cdot\langle | \vec{S}_{p} \times \vec{p}_{p} \mid>} \cdot \frac{1}{\sqrt{N_{+}+N_{-}}}$

* $\alpha_{-} \sim 0.7$ (well known)
* $<A_{\mathrm{C}}>,<\left|\vec{S}_{p} \times \vec{p}_{p}\right|>$, and number of scattering events should be studied.
* Systematic error;
* Good reference to evaluate systematic
* Proton polarization in $\Lambda \rightarrow p \pi^{-}$decay
* To be discussed later

Estimation of the accuracy

- Numbers of $K^{-} p p \rightarrow \Lambda p$ \& p -C scattering -

* Number of $K^{-} p p \rightarrow \Lambda p$ to be detected
* $N_{K^{-} p p}^{\text {det }} \sim 3000 /$ week
* Cross section of $K^{-} p p$
$\sigma_{K-p p} \cdot \mathrm{BR}_{\Lambda p}=9.3 \mu \mathrm{~b}$ (measured value)
* Expected luminosity:
$\mathscr{L}_{\text {week }}=2.8 \mathrm{nb}^{-1} /$ week
(estimation with 90 kW beam-power)
* Acceptance including analysis efficiency: $\sim 15 \%$ (proton detected by barrel-part of new CDS)
* Number of p-C scattering
* $N_{\text {total }}=N_{+}+N_{-} \sim 300$ events/week
* $5 \mathrm{~cm} \times 3$ layers plastic-scintillators used as "scattering target"
* Reaction rate : $\sim 3 \%$ of all incident proton per one 5 cm -plasticscintillator
(Estimated by Geant4 based MC simulation)

Estimation of the accuracy

- Analyzing power -

* Analyzing power of carbon taken from Ref.
* Peak around $T_{P}=0.2 \mathrm{GeV}$
* Momentum distribution of proton
* Simulated by MC
* with 5 cm thickness plastic scintillator
* $6^{\circ}<\theta_{p}^{\text {scat }}<30^{\circ}$ selected
* Similar to A_{C} shape
* Average : $<A_{\mathrm{C}}>\sim 0.4$

Estimation of the accuracy

- Transverse component of proton spin -

* Large transverse component is expected.
* better to measure
* Small difference between S \& P wave decay

$$
\begin{aligned}
& *<\left|\vec{S}_{p} \times \vec{p}_{p}\right|>\sim 0.8 \\
& \quad \text { (S-wave decay) }
\end{aligned}
$$

$$
*<\left|\vec{S}_{p} \times \vec{p}_{p}\right|>\sim 0.9
$$

(P-wave decay)

Estimation of the accuracy

- The accuracy \& Necessary beam-time to determine J^{P} -

* J^{P} would be determined with reasonable beam-time.
* K-meson in S-wave : ~ 13 weeks
* K-meson in P-wave : ~4 weeks
* Assuming $\alpha_{\Lambda p}= \pm 0$ for 1^{-}state
* Proton detected by barrel part of the new CDS
* With 90 kW beam power $\& 5 \mathrm{~cm} \times 3$ layers plastic scintillator

Feasibility study for $\alpha_{\Lambda p}$ measurement

- Measurement of proton polarization in $\Lambda \rightarrow p \pi^{-}$decay -

* Proton polarization in Λ-decay; $\vec{P}_{p \text { from } \Lambda}=\alpha_{-} \cdot \vec{p}_{p \text { from } \Lambda}$
* Measuring similar scalar product to $\alpha_{\Lambda p}$ measurement;

$$
\begin{aligned}
& N\left(\vec{S}_{\Lambda}^{\exp } \cdot \vec{S}_{p \text { from } \Lambda}^{\exp }\right) \propto 1+r \\
& \quad * r \equiv \alpha_{-} \cdot<A_{\mathrm{C}}>\cdot<\left|\vec{S}_{p} \times \vec{p}_{p}\right|>
\end{aligned}
$$

* Huge number of Λ can be easily obtained.
* r \& systematic uncertainty would be evaluated precisely.

Summary

- Measurement of spin-spin correlation in $K^{-} p p$ decay -
* We have plan to propose a new experiment to determine J^{P} of $K^{-} p p$.
* High statistics momentum transfer dependence would separate $0^{-} / 1^{-}$\& $1^{+} / 0^{+}$states.
* Additional measurement of spin-spin correlation between Λ \& proton would determine J^{P}.
* The accuracy of spin-spin correlation measurement was estimated. * J^{P} of $K^{-} \frac{D}{E} p$ would be determined with reasonable beam-time at J-PARC.
* Polarization of proton from Λ-decay is useful to study a feasibility of the measurement as well as systematic uncertainty.

Thank you for your attention!

