REIMEI workshop 2019@ Tokai

Results of experimental search for KbarNN bound state at J-PARC

Takumi Yamaga, RIKEN For the E15 collaboration

KbarN interaction & Kaonic nuclei

- * KbarN interaction is strongly attractive in I = 0 channel.
 - Low energy KbarN scattering
 - * X-ray measurement from kaonic atoms
 - * Structure of $\Lambda(1405)$

- * Bound state of kaon and nucleus
 - * KbarNN : the simplest kaonic nucleus

KbarNN bound state :: Current status

- * Many theoretical & experimental studies
 - Theoretical studies
 - B.E and Width strongly depend on KbarN interaction model.
 - * Experimental studies
 - Results are different even if we use the same reaction.

- In-flight (K-, n) reaction to generate KbarNN bound state
 - $p_K = 1 \text{ GeV/}c$

Analyzed channels

Measured exclusive channels are,,,

$$K^- + ^3\text{He} \rightarrow \Lambda p + n$$

Kinematically identified K^{-} \bar{K} Invariant-mass measurement \bar{K} \bar{K} Invariant-mass measurement \bar{K} \bar{K} $\bar{K$

Decomposition into 3 major components

Physics background : $\Sigma^0 pn$ $\Sigma^{-}pp$ Conversion & FSI processes

Breit-Wigner shape

Well reproduced by 3 components

Acceptance correction

Well reproduced by 3 components

Acceptance correction

 $B \cdot E = 47 \pm 3(\text{stat.})^{+3}_{-6}(\text{syst.}) \text{ MeV}$ $\Gamma = 115 \pm 7(\text{stat.})^{+10}_{-20}(\text{syst.}) \text{ MeV}$

Result of $\pi\Sigma pn$ analysis

Structure is similar to QF.

Compare to Apn analysis

Comparison between Apn & $\pi\Sigma pn$

Comparison between $\Lambda pn \& \pi \Sigma pn$

Conclusion

- * There are many studies of KbarNN bound state.
- * We have been performed experiment with (K-, n) reaction.
 - * We successfully measured exclusive $\Lambda pn \& \pi \Sigma pn$ channels.
 - In Λpn channel
 - * We observed Clear peak below the M(Kpp).
 - * Assuming Breit-Wigner shape, B.E. and Width are found to be,

* $B \cdot E \cdot = 47 \pm 3(\text{stat.})^{+3}_{-6}(\text{syst.}) \text{ MeV}$

* $\Gamma = 115 \pm 7(\text{stat.})^{+10}_{-20}(\text{syst.}) \text{ MeV}$

* In $\pi\Sigma$ pn channel

- * We observed Y* production in 3He(K-, n) reaction at first time in IM($\pi\Sigma$) spectrum.
- * No structure was observed below the M(Kpp) in IM($\pi\Sigma p$) spectrum
 - * More statistics is desired to understand the mesonic decay mode of KbarNN

Thank you for your attention

J-PARC E15 collaboration

S. Ajimura¹, H. Asano², G. Beer³, C. Berucci⁴, H. Bhang⁵, M. Bragadireanu⁶, P. Buehler⁴, L. Busso^{7,8}, M. Cargnelli⁴, S. Choi⁵, C. Curceanu⁹, S. Enomoto¹⁰, H. Fujioka¹¹, Y. Fujiwara¹², T. Fukuda¹³, C. Guaraldo⁹, T. Hashimoto¹⁴, R. S. Hayano¹², T. Hiraiwa¹, M. Iio¹⁰, M. Iliescu⁹, K. Inoue¹, Y. Ishiguro¹⁵, T. Ishikawa¹², S. Ishimoto¹⁰, K. Itahashi², M. Iwasaki^{2,11},^{*} K. Kanno¹², K. Kato¹⁵, Y. Kato², S. Kawasaki¹, P. Kienle¹⁶,[†] H. Kou¹¹, Y. Ma², J. Marton⁴, Y. Matsuda¹², Y. Mizoi¹³, O. Morra⁷, T. Nagae¹⁵, H. Noumi¹, H. Ohnishi^{17,2}, S. Okada², H. Outa², K. Piscicchia⁹, Y. Sada¹, A. Sakaguchi¹, F. Sakuma²,[‡] M. Sato¹⁰, A. Scordo⁹, M. Sekimoto¹⁰, H. Shi⁹, K. Shirotori¹, D. Sirghi^{9,6}, F. Sirghi^{9,6}, K. Suzuki⁴, S. Suzuki¹⁰, T. Suzuki¹², K. Tanida¹⁴, H. Tatsuno¹⁸, M. Tokuda¹¹, D. Tomono¹, A. Toyoda¹⁰, K. Tsukada¹⁷, O. Vazquez Doce^{9,16}, E. Widmann⁴, T. Yamaga^{2,1},[§] T. Yamazaki^{12,2}, Q. Zhang², and J. Zmeskal⁴ ¹ Osaka University, Osaka, 567-0047, Japan ² RIKEN, Wako, 351-0198, Japan ³ University of Victoria, Victoria BC V8W 3P6, Canada ⁴ Stefan-Meyer-Institut für subatomare Physik, A-1090 Vienna, Austria Seoul National University, Seoul, 151-742, South Korea ⁶ National Institute of Physics and Nuclear Engineering - IFIN HH, Bucharest - Magurele, Romania INFN Sezione di Torino, 10125 Torino, Italy ⁸ Universita' di Torino, Torino, Italy ⁹ Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy ¹⁰ High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan Tokyo Institute of Technology, Tokyo, 152-8551, Japan ¹² The University of Tokyo, Tokyo, 113-0033, Japan ¹³ Osaka Electro-Communication University, Osaka, 572-8530, Japan ¹⁴ Japan Atomic Energy Agency, Ibaraki 319-1195, Japan ¹⁵ Kyoto University, Kyoto, 606-8502, Japan ¹⁶ Technische Universität München, D-85748, Garching, Germany ¹⁷ Tohoku University, Sendai, 982-0826, Japan and ¹⁸ Lund University, Lund, 221 00, Sweden

KbarN interaction	Chiral SU(3)			Phenomenological			
Method	Variational		Faddeev	Variational		Faddeev	
	Barnea, Gal, Liverts	Dote, Hyodo, Weise	Ikeda, Kamano, Sato	Yamazaki, Akaishi	Wyceck, Green	Shevchenko, Gal, Mares	Ikeda, Sat
B.E. (MeV)	16	17 - 23	9 - 16	48	40 - 80	50 - 70	60 - 95
Width (MeV)	41	40 - 70	34 - 46	61	40 - 85	90 - 110	45 - 80

From F. Sakuma NFQCD2018 slide

KbarN interaction	Chiral SU(3)			Phenomenological			
Method	Variational		Faddeev	Variational		Faddeev	
	Barnea, Gal, Liverts	Dote, Hyodo, Weise	Ikeda, Kamano, Sato	Yamazaki, Akaishi	Wyceck, Green	Shevchenko, Gal, Mares	Ikeda, Sat
B.E. (MeV)	16	17 - 23	9 - 16	48	40 - 80	50 - 70	60 - 95
Width (MeV)	41	40 - 70	34 - 46	61	40 - 85	90 - 110	45 - 80

From F. Sakuma NFQCD2018 slide

KbarN interaction	Chiral SU(3)			Phenomenological			
Method	Variational		Faddeev	Variational		Faddeev	
	Barnea, Gal, Liverts	Dote, Hyodo, Weise	Ikeda, Kamano, Sato	Yamazaki, Akaishi	Wyceck, Green	Shevchenko, Gal, Mares	Ikeda, Sato
B.E. (MeV)	16	17 - 23	9 - 16	48	40 - 80	50 - 70	60 - 95
Width (MeV)	41	40 - 70	34 - 46	61	40 - 85	90 - 110	45 - 80

From F. Sakuma NFQCD2018 slide

KbarN interaction	Chiral SU(3)			Phenomenological			
Method	Variational		Faddeev	Variational		Faddeev	
	Barnea, Gal, Liverts	Dote, Hyodo, Weise	Ikeda, Kamano, Sato	Yamazaki, Akaishi	Wyceck, Green	Shevchenko, Gal, Mares	Ikeda, Sato
B.E. (MeV)	16	17 - 23	9 - 16	48	40 - 80	50 - 70	60 - 95
Width (MeV)	41	40 - 70	34 - 46	61	40 - 85	90 - 110	45 - 80

From F. Sakuma NFQCD2018 slide

KbarN interaction	Chiral SU(3)			Phenomenological			
Method	Variational		Faddeev	Variational		Faddeev	
	Barnea, Gal, Liverts	Dote, Hyodo, Weise	Ikeda, Kamano, Sato	Yamazaki, Akaishi	Wyceck, Green	Shevchenko, Gal, Mares	Ikeda, Sat
B.E. (MeV)	16	17 - 23	9 - 16	48	40 - 80	50 - 70	60 - 95
Width (MeV)	41	40 - 70	34 - 46	61	40 - 85	90 - 110	45 - 80

Variational vs. Faddeev : Not so changed Chral SU(3) vs. Phenomenological : large difference in B.E.

From F. Sakuma NFQCD2018 slide

KbarNN bound state :: Current status

- * Many theoretical & experimental studies
 - Theoretical studies
 - * KbarNN can be exist.
 - * B.E. & Width strongly depend on KbarN interaction model.

Experimental studies :: Stopped K-

A(stopped $K^-, \Lambda p$)

arXiv:1809.07212

Experimental studies :: Stopped K-

A(stopped $K^-, \Lambda p$)

arXiv:1809.07212

@ 2.85 GeV

DISTO@SATURNE

@ 2.85 GeV

DISTO@SATURNE

 $d(\pi^-, K^-)Yp$

PTEP(2015) 021D01

Experimental studies :: $(\pi^-, K^-) \& (\gamma, K^+\pi^-)$ reactions

 $d(\gamma, \pi^- K^+)X$

PLB 728 (2014) 616

Experimental studies :: $(\pi^-, K^+) \& (\gamma, K^+\pi^-)$ reactions

 $d(\pi^-, K^+)Yp$

PTEP(2015) 021D01

 $d(\gamma, \pi^- K^+)X$

Exclusive analysis of ${}^{3}\text{He}(K^{-}, \Lambda p)n$

Exclusive analysis of ${}^{3}\text{He}(K^{-}, \Lambda p)n$

* Width ~ 110 MeV

arXiv:1809.07212

