Λρη終状態における*K***NN束縛状態の研究** Studying for the *KNN* bound state in the *Apn* final state

Takumi Yamaga For the E15 collaboration

Research Center for Nuclear Physics, Osaka university

2

3 He(K^{-} , Λp)n channel

- $\Lambda + p (\rightarrow \pi^- p + p)$ are measured.
- Neutron is not detected.
 - » Selected by Λp missing-mass

Invariant-mass spectrum

DATA

$IM(\Lambda p)$ vs. Momentum transfer

Spectrum fitting

- We considered three components
 - Kpp bound state
 - Resonance-like structure
 - Qasi-elastic kaon absorption
 - Kinematical structure
 - Other contribution
 - Broad distribution
- Expected spectrum

2D view of each component

Expected distribution Resonant state _(phase space & acceptance included) 1.4 $phys_{Kpp}(M,q) = A_{Kpp} \frac{\left(\Gamma_{Kpp}/2\right)^2}{\left(M - M_{Kpp}\right)^2 + \left(\Gamma_{Kpp}/2\right)^2} \times \exp\left(-\frac{q^2}{Q_{Kpp}^2}\right),$ 0.9 2.5 2.6 2.7 2.8 2.9 3.0 2.32.4 Ap invariant-mass (GeV/ c^2)

Possible components

Resonant state

$$phys_{Kpp}(M,q) = A_{Kpp} \frac{\left(\Gamma_{Kpp}/2\right)^2}{\left(M - M_{Kpp}\right)^2 + \left(\Gamma_{Kpp}/2\right)^2} \times \exp\left(-\frac{q^2}{Q_{Kpp}^2}\right),$$

Qasi-elastic kaon absorption

$$phys_{2NR}(M,q) = A_{2NR} \exp\left(-\left(\frac{M-M_{2NR}(q)}{\Delta M_{2NR}(q)}\right)^2\right) \\ \times \left(\exp\left(-\frac{q^2}{Q_b^2}\right) + R_c + R_f \exp\left(\Delta M_f \cdot M + \Delta q_f \cdot q\right)\right)$$

Possible components

Resonant state

Qasi-elastic kaon absorption

$$phys_{2NR}(M,q) = A_{2NR} \exp\left(-\left(\frac{M-M_{2NR}(q)}{\Delta M_{2NR}(q)}\right)^2\right) \\ \times \left(\exp\left(-\frac{q^2}{Q_b^2}\right) + R_c + R_f \exp\left(\Delta M_f \cdot M + \Delta q_f \cdot q\right)\right),$$

Other contribution

$$phys_X(M,q) = A_X \frac{(\Gamma_X/2)^2}{(M-M_X)^2 + (\Gamma_X/2)^2} \times \frac{q^2}{Q_X^2} \cdot \exp\left(-\frac{q^2}{Q_X^2}\right)$$

Spectrum fitting

Spectrum fitting

- **Observed resonance** Error : $\sim 5\%$
 - ► *K*⁻*pp* bound state?
 - \blacktriangleright B. E. ~ 50 MeV
 - Γ ~ 110 MeV
 - Will be narrower
 - » Resolution
 - » Σ^0 contamination
 - ▶ Q_{Kpp} ~ 400 MeV

Cross section

Summary

- Ap invariant-mass and momentum transfer distributions are well reproduced by three components.
 - Resonance
 - Quasi-free
 - Broad contribution
- Observed resonance state
 - ► *B*.*E*. ~ 50 MeV
 - ► Γ ~ 110 MeV
 - $Q_{Kpp} \sim 400 \text{ MeV}$
 - *σ* ~ 10 μb

BACKUP

2.8

2.9

3.0

15

3-body phase space and acceptance

• We can reduce the $\Sigma^0 pn$ contamination by,

- p-value cut of kinematical fit
- Missing-neutron selection

Reduction efficiency is studied by using MC simulation.

> 3-body phase space $\Lambda pn / \Sigma^0 pn$ final states

Missing-neutron window selection

- ► We can reduce the contamination easily.
- It is better way?

	"n"-window (GeV/ c^2)	$\Sigma^0 pn$ ratio
Default setting –	→ 0.85 - 1.03	18 %
Lower side –	→ 0.85 – 0.94	5 %
Tight condition –	→ 0.90 - 0.98	10 %

- p-value cut of kinematical fit
 - **Σpn** contamination reducing is small
 - Ex.) If we set the p-value cut at 0.1, $\Sigma^0 pn$ ratio and Λpn event become 15.5% and 85%, respectively.
- Not useful? $\Sigma^0 pn$ ratio Λpn accepted ratio 0.8 Σ⁰pn ratio (%) Accepted ratio 0.6 1(0.2 0.0 0.0 0.2 0.4 0.8 0.2 0.4 0.8 0.6 0.6 1.01.0p_{vin, fit} p_{kin, fit}

• To reduce the $\Sigma^0 pn$ contamination, "n"-window selection is better way.

Fitting is performed for tight cut condition

Acceptance which includes analysis efficiency is evaluated to different cut condition.

Fitting result :: All free

Fitting result :: Fix $\Gamma_{Kpp} = 66 MeV \& BE_{Kpp} = 56 MeV$

Fitting result :: Fix $\Gamma_{Kpp} = 10 \text{ MeV}$

Fitting result :: Fix $\Gamma_{Kpp} = 20 \text{ MeV}$

Fitting result :: Fix $\Gamma_{Kpp} = 30 \text{ MeV}$

Fitting result :: Fix $\Gamma_{Kpp} = 40 \text{ MeV}$

Fitting result :: Fix $\Gamma_{Kpp} = 50 \text{ MeV}$

Fitting result :: Fix $\Gamma_{Kpp} = 60 \text{ MeV}$

Fitting result :: Fix $\Gamma_{Kpp} = 70 \text{ MeV}$

Fitting result :: Fix $\Gamma_{Kpp} = 80 \text{ MeV}$

Fitting result :: Fix $\Gamma_{Kpp} = 90 \text{ MeV}$

Fitting result :: Fix $\Gamma_{Kpp} = 100 \text{ MeV}$

Fitting result :: Fix $\Gamma_{Kpp} = 110 \text{ MeV}$

Fitting result :: Fix $\Gamma_{Kpp} = 120 \text{ MeV}$

Fitting result :: Fix $\Gamma_{Kpp} = 130 \text{ MeV}$

Fitting result :: Fix $\Gamma_{Kpp} = 140 \text{ MeV}$

Fitting result :: Fix $\Gamma_{Kpp} = 150 \text{ MeV}$

Fitting result :: Fix $BE_{Kpp} = 10 \text{ MeV}$

Fitting result :: Fix $BE_{Kpp} = 20 \text{ MeV}$

Fitting result :: Fix $BE_{Kpp} = 30 \text{ MeV}$

Fitting result :: Fix $BE_{Kpp} = 40 \text{ MeV}$

Fitting result :: Fix $BE_{Kpp} = 50 \text{ MeV}$

Fitting result :: Fix $BE_{Kpp} = 60 \text{ MeV}$

Fitting result :: Fix $BE_{Kpp} = 70 \text{ MeV}$

Fitting result :: Fix $BE_{Kpp} = 80 \text{ MeV}$

Fitting result :: Fix $BE_{Kpp} = 90 \text{ MeV}$

Fitting result :: Fix $BE_{Kpp} = 100 \text{ MeV}$

Fitting result :: Fix $Q_{Kpp} = 300 \text{ MeV}$

Fitting result :: Fix $Q_{Kpp} = 320 \text{ MeV}$

Fitting result :: Fix $Q_{Kpp} = 340 \text{ MeV}$

Fitting result :: Fix $Q_{Kpp} = 360 \text{ MeV}$

Fitting result :: Fix $Q_{Kpp} = 380 \text{ MeV}$

Fitting result :: Fix $Q_{Kpp} = 400 \text{ MeV}$

Fitting result :: Fix $Q_{Kpp} = 420 \text{ MeV}$

Fitting result :: Fix $Q_{Kpp} = 440 \text{ MeV}$

Fitting result :: Fix $Q_{Kpp} = 460 \text{ MeV}$

Fitting result :: Fix $Q_{Kpp} = 480 \text{ MeV}$

Fitting result :: Fix $Q_{Kpp} = 500 \text{ MeV}$

