

Notification & apology

- Most of the spectra are still preliminary

no definitive numbers, although it is very close to the final

Please be aware three points in this talk

$\Lambda(1405) (\Lambda^*) \text{ in Lattice-QCD}$ *Real world* (m_π = 140 MeV/c²) • Recent Lattice

KN

0.8

• Recent Lattice QCD supports, $\Lambda(1405) = p - K^{-1}$

 $= (uud) \cdot (\overline{us})$

then, one can embed K into nucleus

J.M.M. Hall et al., Phys. Rev. Lett. 114(2015)132002.

$\Lambda(1405)$ (Λ^*) in Lattice-QCD ~Real world ($m_{\pi} = 140 \text{ MeV/c}^2$) **Recent Lattice** QCD supports, 0.8 $\Lambda(1405) = p - K^-$ 0.6 $= (uud) \cdot (\overline{us})$ $|\langle state|E\rangle|^2$ mo then, one can embed $\frac{m_0}{2}\pi\Sigma$ **K** into nucleus πΣ πΣ ΚN 0.2 πΣ ΚN m_0 156 296 570 411 702 m_{π} (MeV)

J.M.M. Hall et al., Phys. Rev. Lett. 114(2015)132002.

How we can learn physics from event distributions?

5 kinematical parameters for Λpn final state (including $\Lambda \rightarrow p\pi$ decay)

resonance $K^{-} + {}^{3}\text{He} \rightarrow R + n \quad \& \quad R \rightarrow \Lambda + p$ ejectile How R is formed: **M**_{inv.Ap} : mass pole position **q** : momentum transfer to $M_{inv,\Lambda p}$ (cos θ_n) How R is decay to Λp : $\cos \theta_{q \to p\Lambda}$: angle between q and Λp decay axis $\eta_{Kn_{\Lambda p}}$: angle between K-n plane and Λ -p plane How R can polarize Λ : $\cos \theta_{\Lambda \to p\pi}$: Λ polarization

How we can learn physics from event distributions?

5 kinematical parameters for Λpn final state (including $\Lambda \rightarrow p\pi$ decay)

 $K^{-} + {}^{3}\text{He} \rightarrow R + n \qquad \& \qquad R \rightarrow \Lambda + p$ ejectile

How R is formed: $M_{inv,\Lambda p}$: mass pole position q : momentum transfer to $M_{inv,\Lambda p}$ (cos θ_n)

How R is decay to Λp :

 $\cos \theta_{q \to p\Lambda}$: angle between *q* and *Ap decay axis*

 $\eta_{K_{n}}$ Applies the set of the set of

Please be aware three points in this talk

 $q \leftrightarrow \theta$ unique for given $M_{inv."?"}$

Previous experiments E151st

Forward n semi-inclusive

Forward n_{mis} . + Λp

$K^{-} + {}^{3}He \rightarrow (\Lambda + p) + n$

Forward n_{mis}. + Ap vs. theory Sekihara-Oset-Ramos

Structure can be explained with quasielastic K scattering & Kpp @x-UM?

Sekihara Oset Ramos

Prog. Theor. Exp. Phys. 2016, 123D03 (27 pages) DOI: 10.1093/ptep/ptw166

On the structure observed in the in-flight ${}^{3}\text{He}(K^{-}, \Lambda p)n$ reaction at J-PARC

Takayasu Sekihara1.*, Eulogio Oset2, and Angels Ramos3

¹Advanced Science Research Center, Japan Atomic Energy Agency, Shirakata, Tokai, Ibaraki 319-1195, Japan

²Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigación de Paterna, Aptdo. 22085, 46071 Valencia, Spain ³Departament de Física Quántica i Astrofísica and Institut de Ciències del Cosmos, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain

"E-mail: sekihara@post.j-parc.jp

Received July 11, 2016; Revised October 7, 2016; Accepted October 15, 2016; Published December 30, 2016

Forward n_{mis} . + Λp

Forward n_{mis}. + Ap vs. theory Sekihara-Oset-Ramos

T. Yamaga

Higher statistics @ E15^{2nd} Forward n_{mis.} + (^ p)_{CDS}

T. Yamaga

What is the structure found in E15^{1st} data? Improving statistics via E15^{2nd} data

Astonished because M_{inv.Ap} spectra looks qualitatively similar to Sekihara-Oset-Ramos

Let's see in more detail

K elastic channel

K elastic channel

Þ

$M_{inv.Np}$ q-selected $n_{mis.} + \Lambda p$

conclusion A:

Definitive peak observed below M(Kpp)

"Kpp", K-QE, broad(?)

Three physical processes in Apn final state

Higher statistics @ E15^{2nd}

Forward $n_{mis.} + (\Lambda^* p)_{CDS}$

F. Sakuma

F. Sakuma K- ³He → Λ *pn @ E15 CDS Exclusive measurement of $\pi^{\pm}\Sigma^{\mp}$ pn final state in K⁻+³He $(\pi^{\pm}\pi^{\mp}n p) + n_{mis.}$ 4-hold coin. w/ n ³He Kn_{mis.} 1 GeV/c Σ **CDS**

 Experimental challenge: neutron detection with plastic counter (t=3cm)

n detection efficiency on CDH ~ 3% solid angle of CDH ~ 60%

x 55 more difficult than Λ **pn** (pp π ⁻) + n_{mis.} 3-hold coin.

F. Sakuma

Neutron ID with CDH

- $\pi^+\pi^-p$ events (3 tracks) in CDS with 4 CDH hits are selected
- a CDH hit with CDC-veto (outer-layer) is applied to identify the "neutral hit"

Neutron clearly identified by CDH

$\Lambda^*(\pi\Sigma)$ pn Events

F. Sakuma

F. Sakuma

10

10

IM(nπ*π*) [GeV/c²]

$\Lambda^*(\pi\Sigma)$ pn final state [by πΣ invariant mass] **Λ(1405)** / Σ(1385) 23,40 MeVE2 120 **Event Selection** Missing n: IM $(\pi^{\pm}\Sigma^{\mp})$ countsper 00 $0.85 < MM(\pi^+\pi^-pn) < 1.03 \text{ GeV/c}^2$ Σ mass: $1.18 < IM(n\pi) < 1.20 \text{ GeV/c}^2$ for Σ^- **Λ(1520)** $1.19 < IM(n\pi^+) < 1.21 \text{ GeV/c}^2 \text{ for } \Sigma^+$ 60 "Simple" PS-Background 40 $\pi^{\pm}\Sigma^{+}pn$ phase-space with the 20 detector acceptance mass 0.2 0.1 n_{mis.} concentrated in 0.4 M(K-p) S 0.6 forward-n region 0.8

counts pero.04 MeV/ct

F. Sakuma

Λ*(πΣ)p*n vs***. Σ***(π+Λ)n*n*

$Λ^*$ →πΣ decay of $Λ^*$ pn events

F. Sakuma

Why $p\Lambda^* \rightarrow \pi\Sigma p$ decay is relatively weak?

small phase-space for "K-pp" $\rightarrow \pi \Sigma N$

K- ³He → Λ p + n - ³ branches - KN→KN & KNN→ Λ N K-QE + incoherent abs. - "Kpp" + n & "Kpp" → Λ p S-wave - "X" + n & "X" → Λ p P-wave?

K- ³He → Λ*p + n – Λ* is not a doorway to "Kpp" – "Kp" + p + n Yield("Kp" + p) > Yield("Kpp") (x ~10) "Kp" is more efficiently formed by kicking out p – "Kpp" + n & "Kpp" → πΣp / Λp ~ 1 Λ*-like decay branch of "Kpp" is similar to YN

Is it mesonic nuclear bound state?

	Kaonic nuclei Kpp		Λ* p resonance Λ* hypernucleus		Hypernuclei: hyperon bound system	
below threshold	M(K+p+p)	yes	slightly below M(Λ*+p)	maybe?	M(Λ+#p+#n)	yes
Theoretical support for existence of pole	Chi.U + Phenomenological	yes	none?	not yet	phenomenological	yes
B.W. pole well separated from threshold	similar to Σ hypernucleus	yes	slightly below Μ(Λ*+p)	maybe not	weak decay only for Λ while $\Gamma_{\Sigma} >> \Gamma_{\Lambda}$	yes
decay channel open only in nuclei	none-mesonic: Kpp → Λ+p	yes & strong	none-mesonic: Λ*N→ NN	yes but relatively weak	none-mesonic-weak: ΛN→ NN	strong for heavy nuclei
branch suppression of mesonic decay as in vacuum	mesonic: Крр → Σ π р	yes much weaker	mesonic-weak- decay: Λ* → Σ π	no	mesonic-weak-decay: Λ → р π	yes / weak in heavy nuclei
none-resonant reaction channel above threshold	quasi-elastic K: KN → KN & Kpp → Λ+p	yes	KNN → Λ*N & Λ*p → Λ+p	N.A.	quasi-free : KN → Λ π	yes
Reaction form factor	~ 400 MeV/c :	compact?	N.A.	N.A.	~ 200 MeV/c :	~ nuclei size
variety	Kpp the first	1	N.A.	N.A.	from A = 3 ~	many

most likely, it is.

conclusion B:

"Kp" (=1") formation observed clearly

in K⁻³He reaction

"Kp" and "Kpp" are produced rather exclusively We are preparing the paper of the observation of — masons in nuclei —

other channels come shortly

Asano: $K d \rightarrow K p'' + n \rightarrow (\Sigma \pi)_{CDS} + n_{mis}$.

q-dependence study : size of resonance?

Hashimoto: $K^- d \rightarrow "Kpp" + \pi^- \rightarrow (\Lambda p)_{CDS} + \pi^$ parasitic to E31 with forward π^- : inverse kinematics of E27

other channels of interest $K^{-4}He \rightarrow "Kppn" + n \rightarrow \Lambda pn + n$ $K^{-6}Li \rightarrow "Kp\alpha" + n \rightarrow \Lambda \alpha + n$

improve efficiency, especially for n & y

The E15 Collaborations

S Ajimura^a, G Beer^b, C Berucci^f, H Bhang^c, M Bragadireanu^e, P Buehler^f, L Busso^{g,h}, M Cargnelli^f, S. Choi^c, C. Curceanu^d, S. Enomoto^o, D. Faso^{g,h}, H. Fujioka^j, Y. Fujiwara^k, T. Fukuda^j, C. Guaraldo^d, T. Hashimotoⁿ, R. S. Hayano^k, T. Hiraiwa^a, M. Iio^o, M. Iliescu^d, K. Inoue^a, Y. Ishiguro^j, T. Ishikawa^k, S. Ishimoto^o, I. Ishiwatari^f, K. Itahashiⁿ, M. Iwai^o, M. Iwasaki^{m,n*}, K. Kanno^k, K. Kato^j, Y. Katoⁿ, S. Kawasaki^j, P. Kienle^p, T. Kim^m, H. Kou^m, Y. Maⁿ, J. Marton^f, Y. Matsuda^q, Y. Mizoi^l, O. Morra^g, T. Nagae^{jk}, H. Noumi^a, H. Ohnishi^{n,a}, S. Okadaⁿ, H. Outaⁿ, K. Piscicchia^d, A. Romero Vidal^d, Y. Sada^a, A. Sakaguchi^j, F. Sakumaⁿ, M. Satoⁿ, A. Scordo^d, M. Sekimoto^o, H. Shi^d, K. Shirotori^a, D. Sirghi^{d,e}, F. Sirghi^{d,e}, K. Suzuki^f, S. Suzuki^o, T. Suzuki^k, K. Tanida^u, H. Tatsuno^v, M. Tokuda^m, D. Tomono^a, A. Toyoda^o, K. Tsukada^r, O. Vazquez Doce^{d,a}, E. Widmann[†], B. K. Weunschek[†], T. Yamaga^j, T. Yamazaki^{k,n}, H. Yim[†], Q. Zhangⁿ, and J. Zmeskal^f

(a) Research Center for Nuclear Physics (RCNP). Osaka University. Osaka. 567–0047. Japan 💌

(b) Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6, Canada 🛤

(c) Department of Physics, Seoul National University, Seoul, 151=742, South Korea 📧

(d) Laboratori Nazionali di Frascati dell' INEN, I-000/14 Frascati, Italy 🔲

(e) National Institute of Physics and Nuclear Engineering - IFIN HH, Romania 💶

(f) Stefan-Meyer-Institut für subatomare Physik, A-1090 Vienna, Austria 💳

(g) INFN Sezione di Torino, Torino, Italy 🔲

(h) Dipartimento di Fisica Generale. Universita' di Torino. Torino. Italy 🔲

(i) Department of Physics, Osaka University, Osaka, 560–0043, Japan 💌

(j) Department of Physics, Kyoto University, Kyoto, 606–6502, Japan 💌

(k) Department of Physics, The University of Tokyo, Tokyo, 113–0033, Japan 💌

(I) Laboratory of Physics, Osaka Electro-Communication University, Osaka, 572-8530, Japan 💌

(m) Department of Physics, Tokyo Institute of Technology, Tokyo, 152-8551, Japan 💌

(n) RIKEN Nishina Center, RIKEN, Wako, 351-0198, Japan 💌

(o) High Energy Accelerator Research Organization (KEK). Tsukuba. 305–0801. Japan 💌

(p) Technische Universität München, D-85748, Garching, Germany 💻

(q) Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan 💌

(r) Department of Physics, Tohoku University, Sendai, 980-8578, Japan 💌

(s) Excellence Cluster Universe, Technische Universität München, D-85748, Garching, Germany 💻

(t) Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 139–706, South Korea 📧

(u) ASRC, Japan Atomic Energy Agency, Ibaraki 319-1195, Japan 💌

(v) Department of Chemical Physics. Lund University. Lund. 221 00. Sweden 📰

tituto Nazionale Intrates Nucleares

University

of Victoria

RIKEN Nishina Center, RIKEN, Wako, 351-0198, Japan

Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy

Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6, Canada

Department of Physics, Seoul National University, Seoul, 151-742, South Korea

National Institute of Physics and Nuclear Engineering - IFIN HH, Romania

Stefan-Meyer-Institut fur subatomare Physik, A-1090 Vienna, Austria

INFN Sezione di Torino, Torino, Italy

High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan

Dipartimento di Fisica Generale, Universita' di Torino, Torino, Italy Department of Physics, Kyoto University, Kyoto, 606-8502, Japan

Department of Physics, The University of Tokyo, Tokyo, 113-0033, Japan

Research Center for Nuclear Physics (RCNP), Osaka University, Osaka, 567-0047, Japan Laboratory of Physics, Osaka Electro-Communication University, Osaka, 572-8530, Japan

Department of Physics, Tokyo Institute of Technology, Tokyo, 152-8551, Japan

Department of Physics, Osaka University, Osaka, 560-0043, Japan

Technische Universita t Munchen, D-85748, Garching, Germany

Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan

ASRC, Japan Atomic Energy Agency, Ibaraki 319-1195, Japan

Department of Chemical Physics, Lund University, Lund, 221 00, Sweden Department of Physics, Tohoku University, Sendai, 980-8578, Japan Excellence Cluster Universe, Technische Universita t Mu nchen, D-85748, Garching, Germany

Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 139-706, South Korea

SEOUL

NATIONAL

UNIVERSITY

Tokyo Tech

