E31: $\Lambda(1405)$ from d(K⁻,n) reaction

Hidemitsu Asano (RIKEN) for the J-PARC E31 collaboration

The 52nd Reimei Workshop, Jan 2019

Investigation of the $\Lambda(1405)$

Lattice QCD Evidence that the $\Lambda(1405)$ Resonance is an \overline{KN} molecule

3

threshold !!

J-PARC E31 experiment

measuring an $\overline{K}N \rightarrow \pi\Sigma$ scattering below the $\overline{K}N$ threshold in the $d(K^{-},n)\pi\Sigma$ reactions

ChiralUnitary Model: D. Jidoet al., NPA725(03)181

- 2 step process
- Producing $\Lambda(1405)$ by virtual K

J-PARC E31 experiment

measuring an $\overline{KN} \rightarrow \pi\Sigma$ scattering below the KN threshold in the $d(K^{-},n)\pi\Sigma$ reactions

Identifying all final states to decompose the I=0 and I = 1 amplitude

$\pi^{\mp}\Sigma^{\pm}$	I = 0, 1	$\Lambda(1405)$ I=0 S-wave, non-resonant			
	1 1	2(1385) I=1 P-Wave	Charged mode		
π Σ° [π Λ]	1=1	α(κ-,ρ)π Δ° [π Λ]			
$\pi^0 \Sigma^0$	I=0	$\Lambda(1405)$ (I=0, S wave) non-resonant	Neutral mode		

E31 setup at the J-PARC K1.8BR beam line

E31 RUN		Beam power	Beam Time	Executed/ Proposed
pre	May 2015	27 kW	2.2d	~5%
1 st	May-June 2016	43 kW	7d	~30%
2 nd	Jan Feb. 2018	51.1kW	21.5d	100% !!

- Missing mass spectrum of $d(K-,n) \pi^{\pm}\Sigma^{\mp}$ ---- K.Inoue $d(K-,n) \pi^{0}\Sigma^{0}$ ---- S.Kawasaki

- Invariant mass spectra of d(K-,n) $\pi^{\pm}\Sigma^{\mp}$ vs mom. transfer --- HA

Analysis of $d(K^-, n)^{\prime\prime} X^{\prime\prime} \pi^{\mp} \Sigma^{\pm}$

The 52nd Reimei Workshop, Jan 2019

Signal/Background process

$\pi^+\Sigma^-/\pi^-\Sigma^+$ missing mass spectra

11

Assuming the similarity of the reaction mechanism of d(K-,n) and d(K-,p), the amplitude of I =0 in the d(K-,n) reaction is dominant below the threshold

d(K⁻,n)"Σ⁰π⁰" Analysis

Y* ->
$$\pi^0 \Sigma^0 \rightarrow \pi^0 \gamma \Lambda \rightarrow \pi^0 \gamma \rho \pi^-$$

Λ(1405) is recoiled at a backward angle. The decay proton is detected by backward detectors

1. Reconstruction of Λ from p π^- 2. Separate " $\Lambda \pi^0 \gamma$ " events from $\Lambda \pi^0$ and $\Lambda \pi^0 \pi^0$ by **d**(**K**⁻,"n Λ ")"**X**" missing mass analysis

The 52nd Reimei Workshop, Jan 2019

KN Thre.

PDG value

16

14

12

10

1.36

1.38

1.4

1.42

 $\Sigma^0 \pi^0$ missing mass [GeV/c²]

1.44

⊡ [µb/MeVsr]

Pure I=0 component

Trying to extract pole positions related to $\Lambda(1405)$

1.48

1.5

1.46

Recent theoretical development

Invariant mass $\pi^{\pm}\Sigma^{\mp}$ vs "q" analysis

Invariant mass $\pi^{\pm}\Sigma^{\mp}$ vs "q" analysis

17

Neutron ID by CDS

- 1/beta vs Energy deposit in CDS of Neutral particle.
- Charge veto by the inner Cylindrical Drift Chamber (CDC)

Σ^+/Σ^- selection by πn_{cds}

Invariant mass of $(\pi^+\Sigma^-/\pi^-\Sigma^+)$

Summary

- Data analysis of the E31-2nd Run is in progress.
 - -- 39.2 G kaons impacted on the deuteron target
- missing mass spectra of $\pi^{\pm}\Sigma^{\mp}$ and $\pi^{0}\Sigma^{0}$ by the kaon induced reaction on deuteron are obtained for the first time
 - -- Pole position of $\Lambda(1405)$ will be extracted by theoretical model fits
- New analysis of Invariant mass of $\pi^{\pm}\Sigma^{\mp}$ and q-dependence is feasible.
 - -- Λ (1405) peak is observed
 - -- I=1 amplitude ($\Sigma(1385)^{0}$ -> $\pi^{\pm}\Sigma^{\mp}$) to be evaluated

The 52nd Reimei Workshop, Jan 2019

IM ($\pi^+\Sigma^-/\pi^-\Sigma^+$) vs cosθn

The 52nd Reimei Workshop, Jan 2019

$$\frac{d^2 \sigma_X}{dM_{\Sigma \pi} dq} \propto \rho_3(\Sigma \pi n) \times \frac{(\Gamma_{\Lambda(1405)}/2)^2}{(M_{\Sigma \pi} - M_{\Lambda(1405)})^2 + (\Gamma_{\Lambda(1405)}/2)^2} \times |\exp(-q^2/2Q_{\Lambda(1405)}^2)|^2,$$

Σ^+/Σ^- selection by πn_{cds}

-with forward neutron ID in the previous slide

Needs Kaon induced reaction

-γ/p induced experiments How these spectra couple to the KbarN pole or the pole is still controversia²⁰¹⁹

HADES collaboration: Phys Rev C87, 025201

d(K⁻,n)"X" missing mass spectra

Detector Performance

The 52nd Reimei Workshop, Jan 2019

Signal/Background process

