J-PARC K1.8BRビームラインにおける d(K⁻, n)**反応による**Λ(1405)粒子の精密分光実験の π⁰Σ⁰ 終状態に関する解析状況 (2)

大阪大学核物理研究センター野海研究室 川崎 新吾

1

目次

- A(1405)研究背景
- J-PARC E31 実験
- ・E31 1st physics run の結果
 - d(K⁻, n)"π⁰Σ⁰"の解析状況 (前回)
 - •後方散乱陽子の検出と解析の妥当性
- ・まとめとE31 2nd physics run の予定

Λ (1405)研究背景

- \(1405)
 - **3 クォーク?** KNの束縛状態?

Λ(1405)はKbarN状態とπΣ状態、2つの 共鳴状態近傍の振る舞いで描写できる。

励起状態ハドロンの内部構造の理解

クォーク→ハドロン形成の理解

T.Hyodo and W.Weise, Phys.RevC77,035204(2008)

この反応により KN 極を強く反映した散乱状態が期待される。

J-PARC E31 実験

- d(K⁻, n) 反応
 - ・ 質量欠損法による $\Lambda(1405)$ の質量測定 : $MM(n) = \sqrt{(P_d + P_{k-} P_n)^2}$

- ・ アイソスピンの同定
 - $\mathbf{d}(\mathbf{K}^-, \mathbf{n})'' \pi^0 \Sigma^0 '' \quad \longleftarrow \quad \mathbf{I} = 0 \; (\wedge (1405))$
 - $\mathbf{d}(\mathbf{K}^-, \mathbf{n})'' \pi^{\pm} \Sigma^{\mp} '' \longleftarrow I = 0,1$
 - $\mathbf{d}(\mathbf{K}^{-},\mathbf{n})''\pi^{0}\Lambda'' \quad \longleftarrow \quad \mathbf{I} = 1 (\Sigma(1385))$
 - $\mathbf{d}(\mathbf{K}^{-}, \mathbf{p})^{"}\pi^{-}\Sigma^{0}$ " \leftarrow I = 1

*d(K-,p)反応によるI = 1の測定も同時に行う

全終状態 $(\pi^{0}\Sigma^{0},\pi^{+}\Sigma^{-},\pi^{-}\Sigma^{+},\pi^{-}\Sigma^{0})$ の測定によりアイソスピン I=0,1の分離を行う。

J-PARC E31 実験 検出器システム

後方散乱陽子の解析

Λ(1405) は後方散乱生成
 →標的後方に置かれた検出器により
 後方に出てくる陽子を測定する

 $\Sigma^0 \pi^0 \to \pi^0 \Lambda \gamma \to \pi^0 \ p \pi^- \gamma$

後方散乱粒子のβと Energy deposit @BPD の相関

•後方散乱陽子の検出及び解析の妥当性を確かめる

• d(K⁻, n)"π⁻Σ⁺" スペクトラムを用いた比較 • (1) Σ⁺ → nπ⁻ (後方散乱陽子の同定をしない)

- (2) Σ⁺ → pπ⁰ (後方散乱陽子の同定を行う)
- ・(1)前の発表
- (2) Σ⁺崩壊の後方散乱陽子の同定
 - d(K⁻, **n**)π⁻"Σ⁺" イベントサンプルの抽出
 - n -> NC
 - π⁻ -> CDS
 - $\Sigma^+ \rightarrow d(K^-, n\pi^-) \Sigma^+ missing mass$
 - 後方散乱陽子p がΣ⁺崩壊であること確認する
 - $d(K^-, n\pi^-p)''\pi^{0''}$ missing mass

K⁻d → n Σ⁺ π⁻ → n n π⁺ π⁻ (wo/ Backward proton)

✓ $d(K^{-}, n)\pi^{-}\Sigma^{+}$ モードは Backward proton hit を要求することと、 $d(K^{-}, n\pi^{-})$ " Σ^{+} "を選択することによって同定できた。 11

Σ+崩壊後方散乱陽子の同定

✓ d(K⁻, n)π⁻Σ⁺イベントと後方散乱検出器で特定した
 p運動量から d(K⁻, nπ⁻p)"π⁰"の分布の再現を確認した。¹²

$d(K^-, n)$ " $\pi^-\Sigma^+$ " (w/backward proton) missing mass

 ✓ d(K⁻, n)"π⁻Σ⁺" (w/o backward proton) スペクトラムと同様な 閾値近傍に構造のあるスペクトラムを得ることができた。

• $K^-d \rightarrow n \Sigma^+ \pi^- \rightarrow n p \pi^0 \pi^-$ (w/ Backward proton)

• $K^-d \rightarrow n \Sigma^+ \pi^- \rightarrow n n \pi^+ \pi^-$ (wo/ Backward proton)

✓ 全体的なスペクトラムの形は再現している

✓ w/ Backward ~ w/o Backward x 0.8 (どちらかの解析に少し不備がある可能性)
 ✓ w/ Backward の統計が少ない

- ✓後方散乱陽子の測定による、 $d(K^-, n)$ " $\pi^-\Sigma^+$ " ($\Sigma^+ \rightarrow p\pi^0$) スペクト ラムを得た。
- ✓ d(K⁻, n)"π⁻Σ⁺" (Σ⁺ → nπ⁻) スペクトラムとの比較により後方検出 の妥当性を確かめた
 - スペクトラムの全体的な形は再現しているようにみえる
 - 1.40 ~ 1.43 GeV/c2 : $d^2\sigma / d\Omega$ ~ 80%
 - ・ より高統計で確認する必要がある。
- E31 2nd physics run の予定(2018/1~)
 - ✓ 高統計(x ~8)によりd(K⁻, n)"π⁰Σ⁰" スペクトラムを測定する
 -> ~100イベントが期待される
 - ✓ $(\pi^+\Sigma^- + \pi^-\Sigma^+ \pi^-\Sigma^0)/2$ スペクトラムの一致を確認する。
 - ✓ d(K⁻, n)"π⁻Σ⁺" (w/、w/o Backward) の一致を確認する

BACK UP

