日本物理学会秋季大会@岡山理科大学 6 September, 2022

$d(K^{-}, n)\pi\Sigma_{I=0}$ スペクトルの解析

Hiroyuki Noumi^{*,#}

* RCNP, Osaka University # Institute of Particle and Nuclear Studies, KEK

K^{bar}N scattering below the K^{bar}N thres. (J-PARC E31)

- measuring an *S*-wave $\overline{KN} \rightarrow \pi\Sigma$ scattering below the \overline{KN} threshold in the $d(K^{-},n)\pi\Sigma$ reactions at a forward angle of *N*.
- ID's all the final states to decompose the I=0 and 1 ampl's.

	Fwd N	$\pi\Sigma$ mode	Isospin	Expected resonance
_{♯上} {	n	$\pi^{\pm} \Sigma^{\mp}$	0, 1	Λ(1405) interference btw I=0 and 1 ampl's.
L	p	$\pi^- \Sigma^0$	1	P-wave $\Sigma^*(1385)$ to be suppressed
峙	n	$\pi^0 \Sigma^0$	0	Λ(1405)

$[\pi^{\pm}\Sigma^{\mp} - \pi^{-}\Sigma^{0}]/2 \operatorname{vs} \pi^{0}\Sigma^{0}(I'=0)$

$$\frac{d\sigma}{d\Omega} \left([\pi^{\pm} \Sigma^{\mp} - \pi^{-} \Sigma^{0}]/2 \right) \propto \left| -\frac{3T_{1}^{I=0} - T_{1}^{I=1}}{4\sqrt{3}} T_{2}^{I'=0} \right|^{2} \approx \frac{d\sigma}{d\Omega} (\pi^{0} \Sigma^{0}) \propto \left| -\frac{3T_{1}^{I=0} - T_{1}^{I=1}}{4\sqrt{3}} T_{2}^{I'=0} \right|^{2}$$

Isospin relation seems to be satisfied.

Extracting Scattering Amplitude

2-step process

$$\frac{d\sigma}{dM_{\pi\Sigma}}\Big|_{\theta_n=3^{\circ}} \sim |\langle n\pi\Sigma|T_2^{I'}(\overline{K}N_2 \to \pi\Sigma)G_0T_1^{I}(K^-N_1 \to \overline{K}n)|K^-\Phi_d\rangle|^2 \sim |T_2^{I'}(\overline{K}N \to \pi\Sigma)|^2 F_{\rm res}(M_{\pi\Sigma})$$

Factorization Approximation

$$F_{\rm res}(M_{\pi\Sigma}) \sim \left| \int_0^\infty dq_{N_2}^3 T_1^I \frac{1}{E_{\bar{K}} - E_{\bar{K}}(q_{\bar{K}}) + i\epsilon} \Phi_d(q_{N_2}) \right|^2, q_{\bar{K}} + q_{N_2} = q_{\pi\Sigma}$$

E31: Response Function, $F_{res}(M_{\pi\Sigma})$

 $F_{\text{res}}(M_{\pi\Sigma}) \sim p_{\pi}^{cm} p_{n}^{2} / |(E_{K^{-}} + m_{d})\beta_{n} - p_{K^{-}} \cos \theta | \times \int d\Omega_{\pi}^{cm} E_{\pi} E_{\Sigma} \left| \int q_{2} T_{1}^{I}(p_{K^{-}}, q_{N}, p_{n}, q_{\overline{K}}, \cos \theta_{n\overline{K}}; M_{\pi\Sigma}) G_{0}(q_{2}, q_{1}) \Phi_{d}(q_{2}) d^{3} q_{2} \right|^{2}$

Gopal et al., NPB119, 362(1977)

Demonstration of the T_1^I amplitude

• 1-step process

$$\frac{d\sigma}{dM_{\pi\Sigma}}\Big|_{\theta_n=3^\circ} \sim |\langle nK^0 n | T_1^I (K^- p \to \overline{K^0} n) | K^- \Phi_d \rangle|^2$$

$$\frac{d\sigma}{dM_{\pi\Sigma}} \sim \left| \int_0^\infty dq_{N_2}^3 T_1^I \delta(p_{K^-} + p_p - p_n - p_{K^0}) \Phi_d(q_{N_2}) \right|^2$$

Demonstration for fitting data with the 1-step $K^-d \rightarrow nK^0"n"$ reaction calculation

• Data: $d(K^-, n)\overline{K}^0n$ Ks/KL, BR(Ks->pi+-) corrected (K. Inoue)

KN Scattering Amplitude

L. Lensniak, arXiv:0804.3479v1(2008)

- $T_2^I(\overline{K}N \to \overline{K}N) = \frac{A}{1 iAk_2 + \frac{1}{2}ARk_2^2}$ • $T_2^I(\overline{K}N \to \pi\Sigma) = \frac{1}{\sqrt{k_1}} e^{i\delta_0} \frac{\sqrt{ImA - \frac{1}{2}|A|^2 ImRk_2^2}}{1 - iAk_2 + \frac{1}{2}ARk_2^2}$ • $T_2^I(\pi\Sigma \to \pi\Sigma)$ $=\frac{e^{i\delta_0}}{k_1}\frac{\left(\sin\delta_0+iIm\left(e^{-i\delta_0}A\right)k_2-\frac{1}{2}Im\left(e^{-i\delta_0}AR\right)k_2^2\right)}{1-iAk_2+\frac{1}{2}ARk_2^2}$
- 5 real number parameters (effective range expansion)
 A: scattering length, R: effective range, δ₀: phase

Fit the spectra to deduce $\overline{K}N$ scattering amplitude

Systematics of the fitting result by the assumed $\overline{K}N$ mass threshold $\frac{d\sigma}{dM_{\pi\Sigma}}\Big|_{\theta_n=0} \sim \Big|T_2^{I'}(\overline{K}N \to \pi\Sigma)\Big|^2 F_{\text{res}}(M_{\pi\Sigma})$

Best fit $\overline{K}N$ scattering amplitude

Scattering Length $A^{I=0} = (-1.12 \pm 0.11^{+0.10}_{-0.07}) + i(0.84 \pm 0.12^{+0.08}_{-0.07})$ fm Effective Range $R^{I=0} = (-0.18 \pm 0.31^{+0.08}_{-0.06}) + i(0.41 \pm 0.13^{+0.09}_{-0.09})$ fm

A pole at $(1417.7^{+6.0+1.1}_{-7.4-1.0}) + (-26.1^{+6.0+1.7}_{-7.9-2.0})i$ MeV/ c^2 $|T_2^{I=0}(\overline{K}N \to \overline{K}N)|^2 / |T_2^{I=0}(\overline{K}N \to \pi\Sigma)|^2 = 2.2^{+1.0+0.3}_{-0.6-0.3}$

*best fit value ± fitting error ± systematic error systematic errors assuming the K⁻p/K⁰n mass threshold

Conclusion

- We analyzed the $I = 0 \pi \Sigma$ mass spectra in the $K^- d \rightarrow N \pi \Sigma$ reactions, knocked-out N measured at ~ 0 degree.
 - well described with the two-step reaction process, $K^-N_1 \rightarrow N\overline{K}, \ \overline{K}N_2 \rightarrow \pi\Sigma$

- S-wave $\overline{K}N_2 \rightarrow \pi\Sigma$ scattering is dominant.

- S-wave $\overline{K}N$ scattering amplitude in I = 0 was deduced.
 - found a resonance pole at 1417.7 26.1i [MeV], which is likely to couple to the $\overline{K}N$ state.

What's next:

Spectral analysis in a wider kinematical region by H. Asano

Backup

Comparison w/ Recent Work

	A ^{I=0} [<i>fm</i>]	Pole 1 [MeV]	Pole2 [MeV]	reference
This work	$\begin{array}{c} -1.12 \pm 0.11 \substack{+0.10 \\ -0.07 \\ +i0.84 \pm 0.12 \substack{+0.08 \\ -0.07 \end{array}}$	$\begin{array}{c} 1417.7^{+6.0+1.1}_{-7.4-1.0}\\ -i26.1^{+7.9+2.0}_{-6.0-1.7}i \end{array}$		
IHW	$-1.97 + 1.05i^{(s)}$	$1424^{+7}_{-23} - i26^{+3}_{-14}$	$1381^{+18}_{-6} - i81^{+19}_{-8}$	ChPT full NLO, $\overline{K}N$ scatt., SIDDHARTA data constraint
TW1 (NLO30)	$-1.61 + 1.02i^{(\$)}$	1433 – <i>i</i> 25 (1418 – <i>i</i> 44)	1371 – <i>i</i> 54 (1355 – <i>i</i> 86)	ChPT LO(NLO), $\overline{K}N$ scatt., SIDDHARTA data constraint
MM#4 (#2)	$\begin{array}{l} -1.81^{+0.30}_{-0.28} \\ + i0.92^{+0.29}_{-0.23} \end{array} ^{\#)}$	$1429^{+8}_{-7} - i12^{+2}_{-3} \\ (1434^{+2}_{-2} - i10^{+2}_{-1})$	$\begin{array}{c} 1325^{+15}_{-15} - i90^{+12}_{-18} \\ (1330^{+4}_{-5} - i56^{+17}_{-11}) \end{array}$	ChPT NLO, $\overline{K}N$, CLAS and SIDDHARTA data constraint
GO Fit-II	$\begin{array}{r} -1.79\substack{+0.13\\-0.14}\\ + \ i1.36\substack{+0.18\\-0.19}\end{array}$	$1421^{+3}_{-2} - i19^{+8}_{-5}$	$1388_{-9}^{+9} - i114_{-25}^{+24}$	ChPT, $\overline{K}N$ scatt., SIDDHARTA data constraint
V ^E -dep	$-1.89 + 1.11i^{(\$)}$	1429 <i>— i</i> 15	1344 — <i>i</i> 49	ChPT LO, $\overline{K}N$ scatt., SIDDHARTA data constraint
LQCD	-1.77 + 1.08i	1430 <i>- i</i> 21	1338 — <i>i</i> 89	Lattice QCD

IHW: Ikeda, Hyodo, Weise, NPA 881(2012)98, ^{\$)}value found in PRC 97(2019)055209
TW1: Cieply, Smejkal, NPA 881(2012)115, ^{\$)}value found in PRC 97(2019)055209
GO Fit-II: Guo, Oller, PRC 87(2013)035202
MM#4: Mai, Meissner, EPJA 51(2015)30, ^{#)}NPA900(2013)51
V^{E-dep}: Ohnishi, Ikeda, Hyodo, Weise, PRC 93(2016)025207, ^{\$)}value found in PRC 97(2019)055209
LQCD: Liu, Wu, Leinweber, Thomas, PLB 808(2020)135652
Liu, Hall, Leinweber, Thomas, Wu, PRD 95(2017)014506

Pole Structure of the Lambda(1405) Region PDG Reviews: Ulf-G. Meissner and T. Hyodo (since Nov. 2015)

Table 83.1: Comparison of the pole positions of $\Lambda(1405)$ in the complex energy plane from next-to-leading order chiral unitary coupled-channel approaches including the SIDDHARTA constraint. The lower two results also include the CLAS photoproduction data.

approach	pole 1 [MeV]	pole 2 [MeV]
Refs. [14, 15], NLO	$1424_{-23}^{+7} - i\ 26_{-14}^{+3}$	$1381^{+18}_{-6} - i\ 81^{+19}_{-8}$
Ref. [17], Fit II	$1421^{+3}_{-2} - i \ 19^{+8}_{-5}$	$1388^{+9}_{-9} - i \ 114^{+24}_{-25}$
Ref. [18], solution $#2$	$1434^{+2}_{-2} - i \ 10^{+2}_{-1}$	$1330^{+4}_{-5} - i \ 56^{+17}_{-11}$
Ref. [18], solution $#4$	$1429^{+8}_{-7} - i \ 12^{+2}_{-3}$	$1325^{+15}_{-15} - i \ 90^{+12}_{-18}$

Citation: R.L. Workman et al. (Particle Data Group), to be published (2022)

A(1405) 1/2⁻

$$I(J^P) = 0(\frac{1}{2}^{-})$$
 Statut: ****

In the 1998 Note on the $\Lambda(1405)$ in PDG 98, R.H. Dalitz discussed the S-shaped cusp behavior of the intensity at the $N-\overline{K}$ threshold observed in THOMAS 73 and HEMINGWAY 85. He commented that Citation: R.L. Workman et al. (Particle Data Group), to be published (2022)

$$J^{P} = \frac{1}{2}^{-}$$

OMITTED FROM SUMMARY TABLE See the related review on "Pole Structure of the A(1405) Region."

LQCD Evidence that $\Lambda(1405)$ is a K^{bar}N molecule

Dependence of the fitting to the assumed threshold $\frac{d\sigma}{dM_{\pi\Sigma}}\Big|_{\theta_n=0} \sim \left|T_2^{I'}(\overline{K}N \to \pi\Sigma)\right|^2 F_{res}(M_{\pi\Sigma})$

Threshold	Chi2/ NDF	Scattering Lenth A [fm]	Effective Range R [fm]	Pole [MeV]	T ₂₂ /T ₁₁ ²
К⁻р	2.03	-1.02(0.11) + 0.92(0.15) <i>i</i>	-0.24(0.38) -0.50(0.15)i	$\begin{array}{r} 1416.7^{+7.0}_{-7.4} \\ -\ 28.1^{+6.1}_{-7.9} i \end{array}$	$1.9^{+0.9}_{-0.7}$
(K⁻p+K⁰n)/2	1.76	-1.12(0.11) + 0.84(0.12) <i>i</i>	-0.18(0.31) -0.41(0.13)i	$\begin{array}{r} 1417.7^{+6.0}_{-7.4} \\ -\ 26.1^{+6.0}_{-7.9} i \end{array}$	$2.2^{+1.0}_{-0.6}$
K⁰n	1.60	-1.19(0.13) + 0.77(0.14) <i>i</i>	-0.10(0.35) -0.32(0.12)i	$\begin{array}{r} 1418.8^{+6.4}_{-7.9} \\ -24.4^{+6.6}_{-8.5} i \end{array}$	$2.5^{+1.1}_{-0.9}$
w/ Syst. Err.		$\begin{array}{r} -1.12 \pm 0.11 \substack{+0.10 \\ -0.07 \\ + 0.84 \pm 0.12 \substack{+0.08 \\ -0.07 \end{array}} i \end{array}$	$-0.18 \pm 0.31^{+0.08}_{-0.06} \\ -0.41 \pm 0.13^{+0.09}_{-0.09}i$	$\begin{array}{c} 1417.7^{+6.0+1.1}_{-7.4-1.0} \\ -\ 26.1^{+6.0+1.7}_{-7.9-2.0} i \end{array}$	$2.2^{+1.0+0.3}_{-0.6-0.3}$

次の一手

- 広い運動学領域の解析→浅野
- ・ドラミ(より拡大した運動学領域のデータ)
- 3q state or 5q state? -> Quark Counting Rule
 - pi-p \rightarrow K* Λ (1405) d σ /d Ω ~s^-(n-2) at large s and t

$\pi^{-}\Lambda \operatorname{vs} \pi^{0}\Lambda (I'=1)$

$$\frac{d\sigma}{d\Omega}(\pi^{-}\Lambda) \propto \left|\frac{T_{1}^{I=0} + T_{1}^{I=1}}{4} T_{2}^{I'=1}\right|^{2} \approx 2 \times \left|\frac{d\sigma}{d\Omega}(\pi^{0}\Lambda) \propto \left|-\frac{T_{1}^{I=0} + T_{1}^{I=1}}{4} T_{2}^{I'=1}\right|^{2}\right|^{2}$$

Isospin relation seems to be satisfied.

Cross Section of $d(K^-, n)''\pi^-\Sigma^+''$ $\Sigma^+ \rightarrow p\pi^0$ (by Kawasaki) vs $\Sigma^+ \rightarrow n\pi^+$ (by Inoue)

• The CS of $d(K^-, n)$ " $\Sigma^+\pi^-$ " measured in the $\Sigma^+ \to p\pi^0$ decay seems to be identical to that in $\Sigma^+ \to n\pi^+$.

deduced $\overline{K}N$ scattering amplitude

$$\frac{d\sigma}{dM_{\pi\Sigma}}\Big|_{\theta_n=0} \sim \left|T_2^{I'}(\overline{K}N \to \pi\Sigma)\right|^2 F_{\rm res}(M_{\pi\Sigma})$$

Scattering Length $A^{I'=0} = (-1.12 \pm 0.11^{+0.10}_{-0.07}) + i(0.84 \pm 0.12^{+0.08}_{-0.07})$ fm Effective Range $R^{I'=0} = (-0.18 \pm 0.31^{+0.08}_{-0.06}) + i(0.41 \pm 0.13^{+0.09}_{-0.09})$ fm

$\Lambda(1405): 1405.1^{+1.3}$ MeV (PDG in 2022) $J^{p} = \frac{1}{2}$, I = 0, $M_{\Lambda(1405)} < M_{K^{bar}N}$, lightest in neg. parity baryons

$\Lambda(1405)$: Double pole? $J^{p} = \frac{1}{2}$, I = 0, $M_{\Lambda(1405)} < M_{K^{bar}N}$, lightest in neg. parity baryons

