d(K⁻⁻, n)" π⁺Σ⁺" 反応による Λ(1405) の研究 井上謙太郎 for the J-PARC E31 Collaboration

d(K⁻, n)^{π0}Σ⁰反応によるΛ(1405)の研究 川崎新吾 for the J-PARC E31 Collaboration

 $d(K^{-}, n)\pi\Sigma_{I=0}$ スペクトルの解析 野海博之 for the J-PARC E31 Collaboration

K⁻d 反応の異なる運動量移行領域での π[±]Σ[∓] 不変質量分布 浅野秀光 for the J-PARC E31 Collaboration

イントロダクション

$$\Lambda(1405)$$

 $S = -1, I = 0, J^p = (\frac{1}{2})$
 $m = 1405.1^{+1.3}_{-1.1} \text{ MeV}$
 $\rightarrow \bar{K}N 閾値のすぐ下$
 $\Gamma = 50.5 \pm 2\text{MeV}$
PDG (R.L. Workman et al.,
PTEP. 2022, 083C01 (2022))

カイラルユニタリー模型 動力学的状態 2 つの
つの
板
構造

D. Jido et al., Nucl. Phys. A 725(2003)181.

井上謙太郎 for the J-PARC E31 collaboration $d(K^-, n)$ " $\pi^+ \Sigma^+$ "反応による $\Lambda(1405)$ の研

J-PARC E31 実験

J-PARC E31 実験

1

4 つすべての
$$\pi\Sigma$$
 モードを測定し
アイソスピン $I = 0,1$ を分離
アイソスピン関係を確認する。
 $\frac{d^2\sigma_{\pi^0\Sigma^0}}{d\Omega dM} = \frac{1}{2} \left(\frac{d^2\sigma_{\pi^-\Sigma^+}}{d\Omega dM} + \frac{d^2\sigma_{\pi^+\Sigma^-}}{d\Omega dM} - \frac{d^2\sigma_{\pi^0\Sigma^-}}{d\Omega dM} \right)$

前方 n
$$\pi^{\mp}\Sigma^{\pm}$$
 $I = 0, 1$ $\Lambda(1405), \Sigma(1385)$ 本講演前方 p $\pi^{-}\Sigma^{0}$ $I = 1$ $\Sigma(1385)$ 本講演前方 n $\pi^{0}\Sigma^{0}$ $I = 0$ $\Lambda(1405)$ 川崎= 0 の 2 ステップ、 $K^{-}N_{1} \rightarrow \bar{K}N_{\hat{n}\hat{f}}, \bar{K}N_{2} \rightarrow \pi\Sigma$ 反応の解析 野海

井上謙太郎 for the J-PARC E31 collaboration d(K⁻⁻, n)" π^干Σ^干"反応による Λ(1405) の母

æ

実験セットアップ

実験セットアップ

$d(K^{-}, n)$ " $\pi^{\mp}\Sigma^{\pm}$ " モードイベントセレクション

井上謙太郎 for the J-PARC E31 collaboration $d(K^-,n)$ " $\pi^{\mp}\Sigma^{\mp}$ "反応による $\Lambda(1405)$ の $\overline{0}$

September 6, 2022

 $\pi^{-}\Sigma^{+}$ モードと $\pi^{+}\Sigma^{-}$ モードの分離

8/17

$\overline{d(K^{-},p)}$ " $\pi^{-}\Sigma^{0}$ " モードイベントセレクション

得られたスペクトラム

井上謙太郎 for the J-PARC E31 collaboration $d(K^-, n)$ " $\pi^+ \Sigma^+$ "反応による $\Lambda(1405)$ の母

理論計算

ダイナミカルチャンネル結合模型との比較

KN 閾値以下のデータ不足ため2つのモデル

 A1:1432 – 75
 MeV
 A2:1372 – 56
 MeV
 B1:1428 – 31
 MeV
 B2:1397 – 98
 MeV

 \Rightarrow モデル.A は $\bar{K}N$ の閾値以下に幅の太い構造

September 6, 2022 12 / 17

ダイナミカルチャンネル結合模型との比較(モデル.B)

September 6, 2022

13/17

J-PARC E31 実験で d(K⁻, n)" π[∓]Σ[±]", d(K⁻, p)" π[−]Σ⁰" スペクトルを測定した。 d(K⁻, n)" π[−]Σ⁺" と d(K⁻, n)" π⁺Σ⁻" に違い ⇒ I = 0 と I = 1 の干渉が観測された。 d(K⁻, n)" π[∓]Σ[±]" に KN 閾値以下に構造 ⇒ Λ(1405) の寄与が観測された。 DCC 模型との比較のデモンストレーションを行った

→ 本データを用いて理論計算の改善を期待

ダイナミカルチャンネル結合模型との比較(モデル.A)

KN 閾値以下のデータ不足ため2つのモデル
 A1:1432 – 75i MeV
 A2:1372 – 56i MeV

/=0、/=1と干渉項の強度を フリーパラメーターとしたフィット

 $\bar{K}N$ 閾値以下の構造のため合わない

ダイナミカルチャンネル結合模型との比較(モデル.B)

井上謙太郎 for the J-PARC E31 collaboration d(K⁻⁻, n)" π^干Σ^干"反応による Λ(1405) の研

- 4 回 ト - 4 三 ト

ダイナミカルチャンネル結合模型との比較(モデル.B)

井上謙太郎 for the J-PARC E31 collaboration $d(K^-, n)$ " $\pi^+ \Sigma^+$ " 反応による A(1405)の研