

大阪大学核物理研究センター野海研究室 川崎 新吾

1

The J-PARC E31 Collaboration

阪大RCNP^A, 阪大理^B, 理研^C, KEK^D, 東大理^E, 東大教養^F, 東工大理^G, 京大理^H, 大阪電通大^I, INFN-Tor ino^J, INFN-LNF^K, SMI^L, ソウル国立 大^M, ミュンヘンエ大^N, Tor ino大^O, Victor ia大^P, 東北大ELPH^Q

川崎新吾^A,味村周平^A,井上謙太郎^A,大西宏明^{A、C},佐田優太^A,白 鳥昂太郎^A, 野海博之^A, 平岩聡彦^A, 山我拓巳^A, 阪口篤志^B, 吉田幸 太郎^B, 板橋健太^C, 岩崎雅彦^{C、G}, 應田治彦^C, 岡田信二^C, 佐久間史 , 典^C, 佐藤将春^C, Q. Zhang^C, 橋本直^C, 馬越^C, 山崎敏光^{C, E}, 飯尾雅 実^D,石元茂^D,岩井正明^D,榎本瞬^D,鈴木祥仁^D,関本美知子^D,豊 田晃久^D,石川隆^E, 鈴木隆敏^E, 早野龍五^E, 藤原裕也^E, 松田恭幸^F, 康寛史^G, 徳田真^G, 友野大^H, 永江知文^H, 藤岡宏之^H, 福田共和^I, 溝井浩^I, L. Busso^{J、O}, D. Faso^{J、O}, O. Morra^J, 竜野秀行^K, M. Bragadireanu^K, C. Curceanu^K, C. Guaraldo^K, M. Iliescu^K, D. Pietreanu^K, D. Sirghi^K, ^L, F. Sirghi^K, ^L, P. B["] ehler^L, M. Cargnelli^L, 石渡智一^L, 施赫將^L, J. Marton^L, 鈴木謙^L, E. Widmann^L, J. Zmeskal^L, H. Bhang^M, S. Choi^M, H. Yim^M, P. Kienle^N, G. Beer^P, 塚田暁^Q

目次

- ٨(1405)研究背景
- J-PARC E31 実験
- d(K-,n)Σ±π∓ スペクトラム
- ・d(K-,n)Σ0π0 モードの同定
- まとめ

A(1405)研究背景

• A(1405) 3クォーク? *K*Nの束縛状態?

Λ(1405)はKbarN状態とπΣ状態、
2つの共鳴状態近傍の振る舞いで描写できる。

励起状態ハドロンの内部構造の理解

クォーク-ハドロン形成の理解

• $\overline{K}N \rightarrow \pi\Sigma$ での共鳴状態を探る。 自由空間では反応できない

*R*N極を強く反映した反応

崩壊モードの分離

- π[±], Σ[∓]はI = 0, I = 1およびこれらの干渉項が混ざる π⁺, Σ⁻ と π⁻, Σ⁺で異なるスペクトラムが得られることが期待される
- π⁰, Σ⁰は純粋にI=0のモードである。
- 全崩壊モードの同定により、反応のアイソスピン振幅が分離できる。

γp→K⁺Λ(1405) 反応で測定 された Λ(1405)からの崩壊 荷電モードによって異なる スペクトラム

K. Moriya *et al.,* Phys. Rev. C87, 035206(2013).

崩壊荷電粒子を測定し全崩壊モードの同定を行う

J-PARC E31 実験

J-PARCハドロンホール、K1.8BR • *d*(*K*⁻,*n*)反応 検出器 システム
 ・
 欠損質量法による
 X Λ(1405)の質量測定 BPD $MM(n) = \sqrt{(P_d + P_{k-} - P_n)^2}$ 1 Gev/c ・生成するハイペロン(Y) BLC TO AC の全崩壊モードの同定 BVC → Λ(1405) $\rightarrow \pi^0, \Sigma^0$ Y Liquid Deuteron target: LD₂ $\rightarrow \pi^+, \Sigma^-$: I = 0CVC NC $\rightarrow \pi^{-}, \Sigma^{+}$ 1500mm $\rightarrow \pi^0 \Lambda$ $: J^{p} = \frac{3^{+}}{2}, I = 1$

> 2015年 5月 J-PARC E15実験の校正データとしてd(K⁻,n)の データを取得することができた。(2日分)

d(K-,n)"X" スペクトラム

GeV/c²

> 1.47 GeV/c² まわりにQF、Charge exchangeのピークが見られる。
 > KN閾値以下のイベントが見られる。

Neutron from charge exchange

 $d(K^-,n)\pi^+\Sigma^\pm$ の特定

- > Missing neutron peak がみえる。
- > 0.9 GeV/c² ~ 0.98 GeV/c²を πΣnの終状態に選ぶ。

10

 $d(K^{-},n)\pi^{+}\Sigma^{\pm}$ スペクトラム

Charge exchange、Σ-decay からの寄与は除いている

> 閾値以下に構造がみれる。
 > *I* = 0 と *I* = 1 が混在している。
 > Σ⁺、Σ⁻モードの分離解析が進行中

$\pi^0 \Sigma^0$ モードの同定

- π⁰, Σ⁰は純粋にI=0のモードである。
- 全崩壊モードの同定により、反応のアイソスピン振幅が分離できる。

Λ(1405)は後方散乱生成の傾向にある

◆後方散乱陽子の測定を行う

標的後方にTOF法で陽子の運動量を測定する 検出器(BPD+BPC)を設置

BPD:TOFカウンター BPC:トラッキングチェンバー

後方散乱陽子識別

後方散乱粒子の β と Energy deposit @ BPD の相関

- > π 、pの分離がはっきりしていない > π 、pの力wL冬州の是海州を行う必要がお
- > πのカット条件の最適化を行う必要がある。

- > 後方散乱へのピークを確認
- > π のカット条件の最適化によりBGの改善が必要 14

まとめ

我々はJ-PARC K1.8 BR beam line においてd(K-,n) 反応のデータを得た。

• $d(K^-, n)\pi^+\Sigma^\pm$ スペクトラムを求めた

- ・閾値以下に構造が見られる
- $\pi^+\Sigma^- \geq \pi^-\Sigma^+$ の区別はしていない
- *I* = 1モードが混在している
- アイソスピンI = 1モードを分離するために $\pi^0 \Sigma^0$ モードの測定が必要
 - $\pi^0 \Sigma^0$ モードの同定に必要な後方散乱 $\Lambda O \Lambda < V$ トを見ることができた。
 - さらなる統計量での実験を予定している。

BACK UP

0.5

n

2.5

Mass square $(GeV/c^2)^2$

2

1.5

1

3.5

3

GeV/c² GeV/c²

4.5

1000

4

前方散乱中性子の測定

