d(K-,n)反応によるΛ(1405)粒子の 精密分光実験のための 液体重水素標的開発(2)

大阪大学核物理研究センター野海研究室

川﨑 新吾

2012/09/07

The J-PARC E31 Collaboration

版大理、阪大RCNP^A、理研^B、KEK^C、東大理^D、東大教養^E、東工大理^F、 京大理^G、大阪電通大^H、INFN-Torino^I、INFN-LNF^J、SMI^K、ソウル国立 大^L、ミュンヘンエ大^M、Torino大^N、Victoria大^o、東北大理^P ○川崎新吾、井上謙太郎、榎本瞬、太田岳史、阪口篤志、吉田幸太 郎、味村周平^A、野海博之^A、板橋健太^B、岩崎雅彦^B、應田治彦^B、大 西宏明^B、岡田信二^B、佐久間史典^B、友野大^B、馬越^B、山崎敏光^B、飯 尾雅実^c、石元茂^c、岩井正明^c、鈴木祥仁^c、関本美知子^c、豊田晃久^c、 石川隆^D、佐藤将春^D、鈴木隆敏^D、施赫將^D、竜野秀行^D、橋本直^D、早 野龍五^D、藤原裕也^D、松田恭幸^E、康寬史^F、徳田真^F、佐田優太^G、永 江知文^G、平岩聡彦^G、藤岡宏之^G、福田共和^H、溝井浩^H、D.Faso^I、 O.Morra¹, M.Bragadireanu¹, C.Curceanu¹, C.Guaraldo¹, M.Iliescu¹, D.Pietreanu^J、D.Sirghi^J、F.Sirghi^J、P.B[¨]ehler^K、M.Cargnelli^K、石渡智一^K、 J.Marton^k、鈴木謙^k、E.Widmann^k、J.Zmeskal^k、H.Bhang^L、S.Choi^L、 H.Yim^L、P.Kienle^M、L.Busso^N、G.Beer^O、塚田暁^P

目次

1. A(1405)研究背景 2. J-PARC-E31実験 3. 液体重水素標的開発 A) 実機セットアップ B) 標的容器の固定 C) 水素液化試験 D) 冷却能力 4. まとめ

∧(1405)研究背景·動機

 $I = 0, J^p = \frac{1}{2}, m = 1405.1 \pm \frac{1.3}{1.0}$ (MeV), $\Gamma = 50 \pm 2$ (MeV) (PDG-2011)

クォーク模型では ∧(1405) (u,d,s)の第一励起状態 sクォークを含まない励起状態を含めて一番軽い粒子 →単純な構成子クォークで説明できていない

これに対して ・K-pの分子共鳴状態が∧のスペクトル近傍に極を持つことが カイラルユニタリーモデルによって示唆されている。

E31実験セットアップ

場所: J-PARCハドロンホール、K1.8BR

d(K⁻,n)Y 反応を用いて∧(1405)の直接生成を行い、 →共鳴状態のピーク位置、崩壊幅を調べる。

容器位置のズレによる検出効率への影響

鉛直方向に標的容器を5mmずらした時の検出効率の変化

崩壊モード	移動前	移動後
$\Sigma^+(\pi^+, \boldsymbol{n}), \pi^-$	7.95 ± 0.13 %	8.045 ± 0.13 %
Σ^0 , π^0	0.89 ± 0.02 %	0.912 ± 0.02 %
$\Sigma^{-}(\pi^{-}, \boldsymbol{n}), \pi^{+}$	20.67 ± 0.22 %	20.85 ± 0.23 %

液体の安定した温度制御

標的容器はスーパーインシュレーターで覆う

液体水素温度領域での 冷却能力(熱交換器を各温度 にするのに必要なヒーター出力)

まとめ

E31実験用液体重水素標的開発を行なった。

- ・実機での少量水素の冷却液化(液化させるのにかかる時間~6hour)及び その熱交換器-標的容器間の循環を確認(標的容器に~14ml)。
- 液化させた水素の長時間(10時間)保持を確認
- ・標的容器の位置のズレによる検出効率への影響。
- ・装置の十分な液化能力(余力~13.5W)

結論

今回の冷却試験で、開発した液体重水素標的(実機形態)と 温度制御システムが正常に働くことが示された。

BACK UP

冷却能力の測定

標的容器をスーパーインシュレーターで覆う 液体水素温度領域での 輻射シールドより 冷却能力(熱交換器を各温度 物質量の少ない にするのに必要なヒーター出力) スーパーインシュレーター 18 と比較する 16 14 $\begin{array}{c} \blacktriangle & 14 \\ \uparrow & 12 \\ \exists & 10 \\ \downarrow & 10 \end{array}$ スーパーインシュレーター有り HEX スーパーインシュレーター無し 約4W改善 R 8 ر ىد 6 Cell 4 $\mathbf{2}$ 0 18 2022熱交換器 温度 K Cell 標的容器までの配管

スーパーインシュレーター で巻かれた標的容器

輻射シールドがなくても 液化は期待できる。

への熱輻射~6W

クーリングパワー(液体水素温度領域外を含む)

低温での標的容器のリーク

真空度、熱換器の圧力、温度が 同時に悪くなる。 標的容器リーク発生による 断熱真空の悪化 真空容器からの熱負荷による 熱交換器の温度上昇、水素圧力上昇

測定器の説明

- p:後方散乱の傾向
- →BPD-time of flight法による運動量測定
- →BPC-崩壊直後の軌道測定(運動量,崩壊地点)
- n:前方散乱
- →NC-time of flight法による運動量測定 π^{\pm} :ソレノイドによる婉曲
- →CDC-婉曲軌道の測定(運動量,崩壊地点)
- TPC-z方向崩壊地点の測定

- ①,②↔ 他 ^{π±}両方の測定→
- ① \leftrightarrow ② Y $\epsilon \pi^{\pm} \epsilon \sigma$ missing mass $\rightarrow \Sigma$ 質量と一致する $\pi \sigma$ 符号の違い
- ③、 $5 \leftrightarrow 4$ π^{-} とpのinvariant mass \rightarrow ③、⑤はΛ 質量と一致
- $③ \leftrightarrow (5,4)$ Y $\geq (\pi^{-} + p)$ とのmissing mass $\rightarrow (3)$ は $\gamma O \cap \pi^{0}$ 質量 より大きい

 $(3 \leftrightarrow 5, 4)$ Y-(π^- + p) missing mass

K-(d,Y)n 反応 Y
$$\rightarrow \pi^{0}, \Sigma^{0} \rightarrow \Lambda(1405)$$

 $\rightarrow \pi^{+}, \Sigma^{-}$
 $\rightarrow \pi^{-}, \Sigma^{+} \rightarrow \pi^{0} \Lambda$ $\Sigma^{*}: J^{p} = \frac{3^{+}}{2}, I = 1$ \mathcal{L} の干渉項が混ざる

容器物質量による検出効率への影響

• PET Cylinder の厚さ

• Beam Window の素材 SUS vs PET

後方散乱pはΛ(1405)と直接結びついた崩壊モード π⁰,Σ⁰ の崩壊粒子 →SUSウィンドウによるp検出の影響

PET円筒の厚さに関する検出効率の変化

崩壊モード	t = 0.3 mm	t = 0.6 mm	
$Σ^+(π^0, p), π^-$	$1.09 \pm 0.03 \%$	1.08 ± 0.03 %	PET厚さの範囲 → 0.25-0.3mmに影響なし
Σ^0 , π^0	1.25 ± 0.03 %	1.26 ± 0.02 %	
Σ^- , π^+	18.7 ± 0.2 %	18.6 ± 0.2 %	

耐圧試験、リークの確認

冷却前に標的容器にかける圧力2気圧(空気の混入を防ぐ)

・標的容器単体耐圧試験 ヘリウムガス 4気圧 1時間→ 変化なし

・熱交換器への取り付け

・重水素ラインのリーク確認

真空容器の真空度 5.1×10⁻³ Pa 18時間後→変化なし

液体水素の密度の揺らぎ~0.14 % →反応断面積の測定値の揺らぎ~0.14 %

反応断面積の統計誤差(数%)に対して無視できる。

標的開発項目

○標的容器(薄肉材料を用いた容器の試験)
○重水素温度制御システムの構成(システムの安全性)
○標的組み立て
○蒸留器単体での水素液化試験(液化の成功、 温度一定保持)
○標的容器への循環試験(標的冷却の確認)

〇冷却能力測定(能力の有意な改善)

熱交換器単体水素冷却試験

20 Kに制御された熱交換器に室温の水素を入れる

熱交換器内の温度と圧力の時間変化

容器物質量による検出効率への影響 • Beam Window の素材 SUS vs PET Geant4によるシミュレーション

後方散乱pはΛ(1405)と直接結びついた崩壊モード π⁰,Σ⁰の崩壊粒子 →SUSウィンドウによるp検出の影響

PETキャップとSUSウィンドウの検出効率

崩壊モード	PETキャップ	SUSウィンドウ
$Σ^+(π^0, p), π^-$	1.07 ± 0.05 %	1.11 ± 0.07 %
Σ^0 , π^0	1.23 ± 0.02 %	1.24 ± 0.02 %
Σ^- , π^+	18.4 ± 0.25 %	18.2 ± 0.31 %

SUSウィンドウの採用 SUSウィンドウの方が 強度がある。

J-PARC-E31実験

d(*K[−],*n)Y 反応を用いて∧(1405)の直接生成を行い、 →共鳴状態のピーク位置、崩壊幅を調べる。

d(*K⁻,*n)Y

・前方に中性子(n)を散乱させることでK⁻とpの散乱状態を実現する。

反応によって生成されるハイペロン(Y)の崩壊

$\mathbf{Y} \rightarrow \pi^0, \Sigma^0 \rightarrow$	$\pi^0, \gamma, \Lambda \rightarrow$	π^0 , γ, π^- , p $(I = 0 \mathcal{O} \mathcal{A})$	1
$\rightarrow \pi^+, \Sigma^- \rightarrow$	π ⁺ , π ⁻ , n	(I = 0, 1)	2
$\rightarrow \pi^{-}, \Sigma^{+} \rightarrow$	π^{-}, π^{+}, n	(l = 0, 1)	3
\rightarrow	π ⁻ , π ⁰ , p	(I = 0, 1)	4
$\rightarrow \pi^0, \Lambda \rightarrow$	π^{0}, π^{-}, p	$(I = 1 \mathcal{O} \mathcal{H})$	5

- ①はYと($\pi^{-} + p$)のmissing mass の違いから④,⑤と区別される。
 - ④は π^{-} とpのinvariant massから①,⑤と区別される。
- ②,③はπ[±]を捕まえることで他のモードから区別される。Yとπ⁺あるいはYとπ⁻から組んだ missing mass によりお互いを区別する。
- → これによりアイソスピンのモードをすべて分離する。

耐圧テストの様子 (差圧:4 atm)

・運転時にかかる圧力: 2atm

容器物質量による検出効率への影響 • Beam Window の素材 SUS vs PET

PETキャップとSUSウィンドウの検出効率

崩壊モード	PETキャップ	SUSウィンドウ
$Σ^+(π^0, p), π^-$	1.07 ± 0.05 %	1.11 ± 0.07 %
Σ^0 , π^0	$1.23 \pm 0.02 \%$	1.24 ± 0.02 %
Σ^- , π^+	18.4 ± 0.25 %	18.2 ± 0.31 %