Spectroscopic study of hyperon resonance below KN threshold via the d(K⁻,n) reaction

Kentaro Inoue Research Center for Nuclear Physics

For the E31 Collaboration MPMBI 2015@ELPAH

Contents

Introduction

•Summary

- •Experimental setup
- •Preliminary results
 - ·d(K⁻, n)"X" spectrum identified $\pi^{+}\Sigma^{\pm}$
 - ·Cross section ratio of $\pi^-\Sigma^+$ to $\pi^+\Sigma^-$
- -Ongoing analysis on $\pi^{\scriptscriptstyle 0}\Sigma^{\scriptscriptstyle 0}\, and\, \pi^{\scriptscriptstyle 0}\Lambda$

	Exp. Target	Primary-beam intensity	Secondary- kaon intensity	Duration	Kaons on target (w/ tgt selection)
May, 2013 (Run#49c)	E15 ^{1st} ³ He	24 kW (30 Tppp, 6s)	140 k/spill	88 h	5.3 x 10 ⁹
Apr-May, 2015 ((Run#62)	alibratior H ₂	26.5 kW (33 Tppp, 6s)	130 k/spill	73 h	3.7 x 10 ⁹
Apr-May, 2015 (Run#62)	alibration D ₂	26.5 kW (33 Tppp, 6s)	130 k/spill	53 h	2.8 x 10 ⁹
Autumn, 2015	E15 ^{2nd} ³ He	40 kW (50 Tppp, 6s)	200k/spill	26d	50x10 ⁹

Introduction

Λ(1405)

PDG $\cdot I(J^p)=0(\frac{1}{2})$ $\cdot mass \ 1405.1^{+1.3}_{-1.0} \text{ MeV}$ $\cdot \text{Width} = 50.5 \pm 2 \text{ MeV}$

$\overline{\mathrm{K}}\mathrm{N}$ bound state

 $\Lambda(1520)$

 $\frac{\Sigma(1192)}{\Lambda(1116)}$

Recent experimental study of $\Lambda(1405)$

Line shapes of $\Lambda(1405)$ have been reported.

Kaon induced reaction is desired.

d(K⁻, n) reaction

• The d(K⁻, n) reaction measured at $\theta_n = 0$ is expected to enhance an S-wave $\overline{K}N \rightarrow \pi\Sigma$ scattering even below the $\overline{K}N$ threshold. Chiral Unitary Model

Analysis on $\pi^{\dagger} \Sigma^{\pm}$ mode

Mode identification $\pi^{\mp}\Sigma^{\pm}$

K⁻ d \rightarrow n π^+ π^- n events was identified.

Signal : Backward $\Lambda(1405)$ production.

BG processes :

1.) Quasi-free K⁰ production. (K⁻ d \rightarrow K⁰ n n_s)

2.) Σ production in a forward direction. (K⁻ d $\rightarrow \pi^{\mp}\Sigma^{\pm}n$)

 $d(K^{-}, n)^{"}X_{\pi^{+}\Sigma^{+}}^{"}$ Spectrum

We observed some events below the $\overline{K}N$ threshold Both $\pi^{-}\Sigma^{+}$ mode and $\pi^{+}\Sigma^{-}$ mode are included. To be separated.

$\pi^{-}\Sigma^{+}$ and $\pi^{+}\Sigma^{-}$ mode identification

Distributions depend on the missing mass of the d(K⁻, n)"X $_{\!\pi\Sigma}$ "

21

1.05

1.15

1.1

1.2

d(K⁻, n π⁻)"X"

1.25

1.3

1.35

1~05

1.15

11

12

d(K⁻, n π⁺)"X"

1.25

1.3

1.35

d(K⁻, n π⁻)"X"

d(K⁻, n π⁺)"X"

1.05

1.2

d(K⁻, n π⁻)"X"

1.25

1.3

1.35

.15

1.2

d(K⁻, n π⁺)"X"

1.25

1.3

1.35

Cross section ratio of $\pi^{-}\Sigma^{+}$ to $\pi^{+}\Sigma^{-}$

The K⁻ d \rightarrow n $\pi^{-}\Sigma^{+}$ mode is dominant.

Analysis on $\pi^0 \Sigma^0$ mode and $\pi^0 \Lambda$ mode

Mode identification $\pi^0\Sigma^0$, $\pi^0\Lambda$

Mode identification $\pi^0\Sigma^0$, $\pi^0\Lambda$

E31 proposal:

http://j-parc.jp/researcher/Hadron/en/pac 0907/pdf/Noumi.pdf

Summary

We have taken the data of the d(K⁻, n) reaction at the K1.8BR beam line.

 \rightarrow We obtain the d(K⁻, n) $\pi^{\mp}\Sigma^{\pm}$ spectrum.

We observed some events below the $\overline{K}N$ threshold. We found that the $K^-d \rightarrow n\pi^-\Sigma^+$ mode is dominant.

We will provide more results soon.

- \rightarrow line sharps and \overline{c} ross section of $\pi \Sigma^{\pm}$.
- \rightarrow some information about $\pi^0 \Sigma^0$, $\pi^0 \Lambda$ modes.

We will continue experiment to increase 20 times more statistics.

We will be able to decompose all isospin mode. The E31 will provide conclusive information for the structure of the $\Lambda(1405)$ and the $\overline{\mathrm{KN}}$ interaction.

Thank you for your attention

The J-PARC E31 Collaboration

S. Ajimura¹, G. Beer², M. Bragadireanu⁴, P. Buehler⁴, L. Busso⁵, M. Cargnelli⁴, S. Choi³, C. Curceanu⁸, S. Enomoto¹⁴, D. Faso⁵, H. Fujioka¹³, Y. Fujiwara¹², T. Fukuda¹¹, C. Guaraldo⁸, R. S. Hayano¹², T. Hashimoto⁹, T. Hiraiwa¹, M. lio¹⁴, M. Iliescu⁸, K. Inoue¹, N. Ishibashi⁷, Y. Ishiguro¹³, T. Ishikawa¹², S. Ishimoto¹⁴, T. Ishiwatari⁴, K. Itahashi⁹, M. Iwai¹⁴, M. Iwasaki^{9,10}, S. Kawasaki¹, P. Kienle¹⁵, H. Kou¹⁰, Y. Ma⁹, J. Marton⁴, Y. Matsuda¹², Y. Mizoi¹¹, O. Morra⁵, T. Nagae¹³, H. Noumi¹, H. Ohnishi⁹, S. Okada⁹, H. Outa⁹, K. Piscicchia⁸, L. Poli Lener⁸, A. Romero Vidal⁸, Y. Sada¹, A. Sakaguchi⁷, F. Sakuma⁹, M. Sato⁹, M. Sekimoto¹⁴, H. Shi¹², K. Shirotori¹, D. Sirghi⁸, F. Sirghi⁸, S. Suzuki¹⁴, T. Suzuki¹², H. Tatsuno⁸, M. Tokuda¹⁰, D. Tomono⁹, A. Toyoda¹⁴, K. Tsukada¹⁶, E. Widmann⁴, O. Vazquez Doce⁸, T. Yamaga¹, T. Yamazaki^{9,12}, K. Yoshida⁷, H. Yim³, J. Zmeskal⁴.

- 1. Research Center for Nuclear Physics, Osaka University, Japan
- 2. University of Victoria, Canada, 3. Seoul National University, South Korea
- 4. Stefan Meyer Institut fur subatomare Physik, Austria,
- 5. INFN Sezione di Torino, Italy , 6.Universita' di Torino, Italy
- 7. Osaka University, Japan, 8. Laboratori Nazionali di Frascati dell'INFN, Italy
- 9. RIKEN, Japan, 10. Tokyo Institute of Technology, Japan
- 11. Osaka Electro-Communication University, Japan, 12. University of Tokyo, Japan
- 13. Kyoto University, Japan, 14. High Energy Accelerator Research Organization (KEK), Japan
- 15. Technische Universitat Munchen, Germany, , 16. Tohoku University, Japan

Back up

Yield estimation

The analysis is on going

	Power (Beam Time)*	Yield (1.4~1.43 GeV/c ²)		Experimental Achievement
	rine)	mode	mode	expected
May, 2015 (run#62)	26.5 kW 2.2 days	250	TBA	180 was expected in the $\pi^\pm\Sigma^\mp$ modes
Autumn, 2015 Case I	40 kW 5 days	870	30	π [±] Σ [∓] mode ID separately
Autumn, 2015~ Case II	40 kW 10 days	1700	60	Yield of the $\pi^0 \Sigma^0$ mode be confirmed
Autumn, 2015~ Case III	40 kW 20 days	3400	130	$\pi^0 \Sigma^0$ mode line shape?
Autumn, 2015~ Case IV	40 kW 27 days	4700	180	Proposed beam time

Outlook - E15^{2nd} & near future plan@K1.8BR

E15 2nd-stage physics run

- x10 statistics, ~10% of full proposal
- Exclusive analysis
- Kinematically complete measurement of ³He(K⁻, ∧pn)
- E31 pilot run (D2-target)

► E17→E62: K⁻He x-ray measurement with TES

- TES: novel cryogenic detector, ~5 eV FWHM@6 keV
- · Feasibility test was successfully performed at PSI
- E57: K⁻d x-ray measurement with SDDs

Detector performance---CDS

CDS PID

Detector performance---CDS

NC time resolution is estimated by 160ps at γ peak. Quasi-elastic peak is clearly seen.

Reaction : $K^- d \rightarrow \Lambda(1405) n : n=0 deg$

Data reproduction by sim

CDS $\pi^+\pi^-$ invariant mass Reaction : K⁻d \rightarrow K⁰n n_s

$K^- d \rightarrow n \pi^+ \pi^- n$ events

