Spectroscopic experiment of Λ(1405) via in-flight d(K-,n) reaction at J-PARC K1.8BR

Shingo Kawasaki for the J-PARC E31 collaboration RCNP, Osaka University

J-PARC E31 collaboration

S. Ajimura^a, G. Beer^b, H. Bhang^c, M. Bragadireanu^e, P. Buehler^f, L. Busso^{g,h}, M. Cargnelli^f, S. Choi^c, C. Curceanu^d, S. Enomotoⁱ, D. Faso^{g,h}, H. Fujioka^j, Y. Fujiwara^k, T. Fukuda^l, C. Guaraldo^d, T. Hashimoto^k, R. S. Hayano^k, T. Hiraiwa^a, M. Iio^o, M. Iliescu^d, K. Inoueⁱ, Y. Ishiguro^j, T. Ishikawa^k, S. Ishimoto^o, T. Ishiwatari^f, K. Itahashiⁿ, M. Iwai^o, M. Iwasaki^{m,n*}, Y. Katoⁿ, S. Kawasakiⁱ, P. Kienle^p, H. Kou^m, Y. Maⁿ, J. Marton^f, Y. Matsuda^q, Y. Mizoi^l, O. Morra^g, T. Nagae^{i[§]}, H. Noumi^a, H. Ohnishiⁿ, S. Okadaⁿ, H. Outaⁿ, K. Piscicchia^d, M. Poli Lener^d, A. Romero Vidal^d, Y. Sada^j, A. Sakaguchiⁱ, F. Sakumaⁿ, M. Satoⁿ, A. Scordo^d, M. Sekimoto^o, H. Shi^k, D. Sirghi^{d,e}, F. Sirghi^{d,e}, K. Suzuki^f, S. Suzuki^o, T. Suzuki^k, K. Tanida^c, H. Tatsuno^d, M. Tokuda^m, D. Tomonoⁿ, A. Toyoda^o, K. Tsukada^r, O. Vazquez Doce^{d,s}, E. Widmann^f, B. K. Weunschek^f, T. Yamagaⁱ, T. Yamazaki^{k,n}, H. Yim^t, Q. Zhangⁿ, and J. Zmeskal^f

- (a) Research Center for Nuclear Physics (RCNP), Osaka University, Osaka, 567-0047, Japan •
- (b) Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6, Canada
- (c) Department of Physics, Seoul National University, Seoul, 151-742, South Korea 💌
- (d) Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy 🛽
- (e) National Institute of Physics and Nuclear Engineering IFIN HH, Romania 📕
- (f) Stefan-Meyer-Institut für subatomare Physik, A-1090 Vienna, Austria 💳
- (g) INFN Sezione di Torino, Torino, Italy
- (h) Dipartimento di Fisica Generale, Universita' di Torino, Torino, Italy
- (i) Department of Physics, Osaka University, Osaka, 560-0043, Japan 🔹
- (j) Department of Physics, Kyoto University, Kyoto, 606-8502, Japan 🔹
- (k) Department of Physics, The University of Tokyo, Tokyo, 113-0033, Japan •
- (I) Laboratory of Physics, Osaka Electro-Communication University, Osaka, 572-8530, Japan •
- (m) Department of Physics, Tokyo Institute of Technology, Tokyo, 152-8551, Japan •
- (n) RIKEN Nishina Center, RIKEN, Wako, 351-0198, Japan •
- (o) High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan •
- (p) Technische Universität München, D-85748, Garching, Germany 💳
- (q) Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan •
- (r) Department of Physics, Tohoku University, Sendai, 980–8578, Japan 🔹
- (s) Excellence Cluster Universe, Technische Universität München, D-85748, Garching, Germany 💻
- (t) Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 139–706, South Korea 💌

(*) Spokesperson

(\$) Co-Spokesperson

Contents

- Motivation
- Experiment
 - J-PARC E31 experiment
 - J-PARC E31 experiment set up
 - Detector performance
- Analysis of d(K-,N)Σπ spectrum
 - Analysis procedure
 - $d(K-,n)''\Sigma^{\pm}\pi^{\mp}''$ spectrum (I =0 & I =1)
 - $d(K-,p)''\Sigma^0\pi^{-}''$ spectrum (I = 1)
 - $d(K-,n)''\Sigma^0\pi^0''$ analysis status (I = 0)
 - conclusion

Motivation

• Investigation of $\Lambda(1405)$

 $\Lambda^*(1405) \text{ [uds]}$ I = 0,J^p = $\frac{1}{2}^-$,m=1405.1 $\pm^{1.3}_{1.0}$ (MeV)<N*(1440) $\Gamma = 50 \pm 2$ (MeV) (PDG-2012)

• 3 quark ? $\overline{K}N$ bound state ?

KN Thre. 1432 MeV
 27 MeV
 Λ(1405)

 2 pole structure of Λ(1405) with K
 K
 N, πΣ resonant states by chiral unitary model

• Investigation of $\Lambda(1405)$ spectrum shape in $\overline{K}N \rightarrow \pi\Sigma$

The reaction is expected to enhance the scattering

J-PARC E31 experiment

Λ(1405) measurement via in-flight d(K⁻, n)

forward scattered neutron 1.2~1.3 GeV/c

6

n

- Identification of final isospin state
 - $\pi^{\pm}\Sigma^{\mp}$ have I =0 and I =1 amplitude
 - $\pi^0 \Sigma^0$ is I =0 purely
 - We will measure all the decay mode to decompose isospin amplitude

Х

J-PARC E31 experiment set up

K1.8BR spectrometer

Detector performance

Neutron Counter

Cylindrical detector system (CDS)

 π^+ π^- invariant mass [GeV/c²]

p π^2 invariant mass [GeV/c²]

Analysis of $d(K^-, n)\pi^{\pm}\Sigma^{\mp}$ spectrum

$$\begin{array}{rcl} Y & \rightarrow & \pi^+, \Sigma^- \rightarrow \pi^+ \pi^- \ n \\ & \rightarrow & \pi^-, \Sigma^+ \rightarrow \pi^- \pi^+ \ n \end{array}$$

- Analysis procedure
 - d(K⁻, n) $\pi^{\mp}\pi^{\pm}$ "n"
 - n -> NC
 - $\pi^{\mp}\pi^{\pm} \rightarrow CDS$
 - $d(K^-, \pi^+\pi^{\pm}n)''n''$ identification
 - BG rejection in the $d(K^-, n)\pi^+\pi^{\pm}n^{\pm}$
 - 1. $K^-d \rightarrow (\pi \Sigma)_{backward} nfo_{rward} \rightarrow Signal$
 - 2. $K^-d \rightarrow K^0n nsp_{ectator} \rightarrow K^0 \text{ production (BG)}$
 - *3.* K[−]d → (πΣ)_{forward} n_{spectator} → Forward Σ production (BG)
 - $d(K^-, n)\pi^{\pm}\Sigma^{\mp}$ spectrum after the BG rejection
 - Decompose of $\Sigma^-\pi^+$ and $\Sigma^+\pi^-$

$d(K^-, \pi^{\mp}\pi^{\pm}n)$ "n" identification

$\mathsf{BG}: \mathsf{K}^-\mathsf{d} \to \mathsf{K}^0\mathsf{n} \; \mathsf{n}_{\mathsf{spectator}}$

The structures below and above the threshold

Decomposition into $\Sigma^{-}\pi^{+}$ and $\Sigma^{+}\pi^{-}$

- The d(K-,nπ)"X" distribution's are fitted with the distribution of Σ+ and Σ- estimated by MC SIM (Template fitting)
 - Fitted bin by bin of the d(K-,n)"X"

Decomposed spectrum of $\Sigma^{-}\pi^{+}$ and $\Sigma^{+}\pi^{-}$

w/ acceptance correction

 The difference between two mode is due to the interference term of I =0 and I =1

Average of $\Sigma^{-}\pi^{+}$ and $\Sigma^{+}\pi^{-}$ spectra

The interference term is expected to be canceled

- d(K-,p)" $\Sigma^0 \pi^-$ " missing mass
 - I =1 mode

Suppression of I =0 below the threshold relatively

Suppression of I =1

Assuming the similarity of d(K-,n) and d(K-,p),

the amplitude of I =1 in the d(K-,n) reaction is expected to be suppressed below the threshold \rightarrow the measurement of I =0 is waited for strongly

$d(K-,n)''\Sigma^0\pi^0''$ analysis status

$$\pi^0\Sigma^0 \to \pi^0 \ p\pi^-\gamma$$

∧(1405) is recoiled backward
 → the decay proton emitted backward is detected by backward detectors

- Analysis procedure
 - Reconstruction of Λ from p π^-
 - Separation of A $\pi^0\gamma$ by $d(K^-,n\,A)^{\prime\prime}X^{\prime\prime}$ missing mass from A π^0 or A $\pi^0\pi^0$

Backward Lambda reconstruction

 $d(K-,n\Lambda)''X''$ missing mass

- Events in the region of $\pi^0 \gamma$ is confirmed
- Events in the region of π^0 (I = 1) is suppressed
- However we need more data for the d(K-,n)" $\Sigma^0 \pi^0$ " spectrum

conclusion

- The preliminary result of the E31 1st physics run is presented
 - The d(K-,n)" $\Sigma^{-}\pi^{+}$ " and " $\Sigma^{+}\pi^{-}$ " spectra are observed.
 - The difference of two spectrum is clearly seen which is due to the interference term
 - The d(K-,p)" $\Sigma^0 \pi^-$ " spectrum (I = 1) is observed.
 - This mode is suppressed especially below the threshold .

→ The I = 0 amplitude is dominant below the KbarN threshold in the d(K-,n)" $\Sigma^{-}\pi^{+}$ " and " $\Sigma^{+}\pi^{-}$ " spectra

- The d(K-,n)" $\Sigma^0 \pi^0$ " spectrum (I = 0) is to be measured
 - Identification of this mode is succeeded.
 - We will take 2^{nd} run data for the $\Sigma^0 \pi^0$ (I=0) spectrum (in the next spr. ?).

BACK UP

Decompose of signal and BG

• Fitting of invariant $(\pi^{-}\pi^{+})$, $(n \pi^{+})$ and $(n \pi^{-})$ by SIM

Invariant mass ($\pi^-\pi^+$)

Invariant mass $(\pi^{-}n)$

• SIM seem to reproduce the data well

 $d(K^-, n)\pi^{\mp}\pi^{\pm}"n"$ spectrum $d(K^{-}, n)$

- Charge exchange peak around 1.47 GeV/C^2
- Significant yield below the $\overline{K}N$ threshold.
- Removal of BG \rightarrow

d(K⁻, n)"X" spectrum

• $\pi^-\pi^+$ is detected in CDS

- Charge exchange peak around 1.47 GeV/C²
- In this spectra, $d(K^-, n)\pi^{\mp}\pi^{\pm}n^{*}$ is abstracted \rightarrow