"3rd Jagiellonian Symposium on Fundamental and Applied Subatomic Physics", Collegium Maius 24-28 June, 2019

Experimental Study of $\Lambda(1405)$ resonance via kaon-induced reactions on deuteron

Hiroyuki Noumi^{*,#} for the J-PARC E31 collaboration

* RCNP, Osaka University # Institute of Particle and Nuclear Studies, KEK X(3872)

X(3872)

 $\overline{D}^*\Sigma_c - \overline{D}^*\Sigma_c^*$ molecular state Phys. Rev. D92,094003 (2015)

$\overline{D}\Sigma_c$, $\overline{D}^*\Sigma_c$ states Phys.Rev.Lett. 122 (2019) 242001

Pc's

$\Lambda(1405)$ since 1961

 Well-known lightest Hyperon Resonance w/ a negative parity, sitting just below the KbarN mass threshold

$\Lambda(1405): 1405.1^{+1.3}_{-0.9}$ MeV (PDG in 2019) $J^{p} = \frac{1}{2}, I = 0, M_{\Lambda(1405)}, M_{K^{bar}N}$, lightest in neg. parity baryons

$\Lambda(1405): 1405.1^{+1.3}_{-0.9}$ MeV (PDG in 2019) $J^{p} = \frac{1}{2}, I = 0, M_{\Lambda(1405)}, M_{K^{bar}N}$, lightest in neg. parity baryons

$\Lambda(1405)$: Double pole? $J^{p} = \frac{1}{2}$, I = 0, $M_{\Lambda(1405)} < M_{K^{bar}N}$, lightest in neg. parity baryons

LQCD Evidence that $\Lambda(1405)$ is a K^{bar}N molecule

 Study of K^{bar}N scattering below the K^{bar}N thres. are important.

Pole Structure of the Lambda(1405) Region PDG Reviews: Ulf-G. Meissner and T. Hyodo (Nov. 2015)

Table 1: Comparison of the pole positions of $\Lambda(1405)$ in the complex energy plane from nextto-leading order chiral unitary coupled-channel approaches including the SIDDHARTA constraint.

approach	pole 1 [MeV]	pole 2 [MeV]
Refs. 11,12, NLO	$1424^{+7}_{-23} - i\ 26^{+3}_{-14}$	$1381^{+18}_{-6} - i \ 81^{+19}_{-8}$
Ref. 14, Fit II	$1421_{-2}^{+3} - i \ 19_{-5}^{+8}$	$1388^{+9}_{-9} - i \ 114^{+24}_{-25}$
Ref. 15, solution $#2$	$1434^{+2}_{-2} - i \ 10^{+2}_{-1}$	$1330^{+4}_{-5} - i \ 56^{+17}_{-11}$
Ref. 15, solution $#4$	$1429^{+8}_{-7} - i \ 12^{+2}_{-3}$	$1325^{+15}_{-15} - i \ 90^{+12}_{-18}$

$\Lambda(1405): 1405.1^{+1.3}_{-1.0}$ MeV (Part. Listing in '19) $J^{p} = \frac{1}{2}, I = 0, M_{\Lambda(1405)}, M_{K^{bar}N}$, lightest in neg. parity baryons

M. Hassanvand et al: $\pi\Sigma$ IM Spec. of pp $\rightarrow K^+\pi\Sigma$

J. Esmaili et al: $\pi\Sigma$ IM Spec. of Stopped K⁻ on ⁴He

R.H. Dalitz et al: $\pi\Sigma$ IM Spec. in K-p \rightarrow ππΣ w/ M-matrix

Questions on $\Lambda(1405)$

- K^{bar}N int. and its pole position are still unclear.
 Basic information on Kaonic Nuclei
- Not yet demonstrated if it is a molecular state.
 - To establish it as an exotic state
 - Hadron Picture in excited states
 - New question related to classification in CQM
 - Formation probability in hadronization
 - ExHIC (Phys.Rev. C84 (2011) 064910)

Important to study Low Energy K^{bar}N scattering

K^{bar}N scattering below the K^{bar}N thres. (J-PARC E31)

■ measuring an *S*-wave $\overline{K}N \to \pi\Sigma$ scattering below the $\overline{K}N$ threshold in the $d(K^{-},n)\pi\Sigma$ reactions at a forward angle of *n*.

ID's all the final states to decompose the I=0 and 1 ampl's.

$\pi^{\pm}\Sigma^{\mp}$	I=0, 1	Λ (1405) (I=0, S wave), non-resonant[I=0/1] (Σ(1385) (I=1, P wave) to be suppressed)
$\pi^-\Sigma^0$ $[\pi^-\Lambda]$	I=1	non-resonant (Σ (1385) to be suppressed) $d(K^{-},p)\pi^{-}\Sigma^{0}[\pi^{-}\Lambda]$
$\pi^0 \Sigma^0$	I=0	Λ(1405) (I=0, S wave) , non-resonant

Experimental Setup for E31

Event topology of $d(K^-, n)X_{\pi^{\pm}\Sigma^{\mp}}$

Event topology of $d(\overline{K^-}, p)X_{\pi^-\Sigma^0}$

Event topology of $d(K^-, n)X_{\pi^0\Sigma^0}$

BG Process: $d(K^{-}, n) X_{\pi^{0}\Lambda}, d(K^{-}, n) X_{\pi^{0}\pi^{0}\Lambda}, d(K^{-}, \Sigma^{-}p) X$

 $\pi^{+}\Sigma^{-}/\pi^{-}\Sigma^{+}$ (*I* = 0, 1)

$\pi^{0}\Sigma^{0}(I = 0)$ $\pi^{-}\Sigma^{0}(I = 1)$

$\pi^{\pm}\Sigma^{\mp}/2 (I = 0, 1) \qquad \pi^{0}\Sigma^{0}(I = 0)$ $[\pi^{\pm}\Sigma^{\mp} - \pi^{-}\Sigma^{0}]/2 (I = 0)$

Remarks

• We first measured a complete set of $\overline{K}N \to \pi\Sigma$ data below and above the $\overline{K}N$ threshold.

- We are very close to finalize the spectra.

• Structures below and above the $\overline{K}N$ threshold are observed in $d(K^-, n)X_{\pi^{\pm}\Sigma^{\mp}}$

– Interference btw I=0 and 1.

- I=0 amp. seems dominant in $\pi^{\pm}\Sigma^{\mp}$ modes.
 - From measured pure I=1 channel, $d(K^-, p)X_{\pi^-\Sigma^0}$.

Outlook (instead of summary)

Pole position?

- K^{bar}N Scattering Amplitudes to be extracted
- How to decompose the I=0 and 1 amps.
 - Significant yield nearby the K^{bar}N threshold but no clear peak structure
 - A simple "BW + Some plausible function" seems too naïve to explain the spectra...

To deduce $\overline{K}N$ scattering amplitude

$$\frac{d\sigma}{dM_{\pi\Sigma}}\Big|_{\theta_n=0} \sim |\langle n\pi\Sigma|T_2^I(\overline{K}N,\pi\Sigma)g_2G_0g_1T_1(K^-N,\overline{K}N)|K^-\Phi_d\rangle|^2 \\ \sim |T_2^I|^2F_{QF}(M_{\pi\Sigma})$$

$$T_{12} = \frac{1}{\sqrt{k_1}} e^{i\delta_0} \frac{\sqrt{ImA - \frac{1}{2}|A|^2 ImRk_2^2}}{1 - iAk_2 + \frac{1}{2}ARk_2^2} \quad (\overline{K}N \to \pi\Sigma)$$

$$T_{22} = \frac{A}{1 - iAk_2 + \frac{1}{2}ARk_2^2} \quad (\overline{K}N \to \overline{K}N)$$

L. Lensniak, arXiv:0804.3479v1(2008) ²¹

To deduce $\overline{K}N$ scattering amplitude

$$\frac{d\sigma}{dM_{\pi\Sigma}}\Big|_{\theta_n=0} \sim |T_2^I|^2 F_{QF}(M_{\pi\Sigma})$$

Form Factor of $\Lambda(1405)$?

- To resolve "Not yet demonstrated if it is a molecular state"...
- Angular Distribution may provide a hint...

...as is the case for "K-pp"