Toward a study of $\Lambda(1405)$ via the d(K-, $\Sigma\pi$) reaction

2018/03/24

Osaka University, RCNP Omar Zhadyra for the J-PARC E-31 collaboration

The main goal:

To measure the invariant Mass of the $\Sigma^{+}\pi^{\pm}$ in the $\mathbf{d}(\mathbf{K}^{-}, \Sigma\pi)$ "n" reaction.

!!! Presented based on approximately 10% of the E31 data!!!

Experimental Setup for E31

Momentum and mass distribution measured by the CDS (PID).

4

K°bar mass reconstruction

Forward neutron

NC

CDS

Missing neutron identification in d(*K*⁻, $n\pi^+\pi^-$)"*X*"

Identification of Σ + and Σ -

Invariant Mass of $n\pi^+$ and $n\pi^-$. The strong focusing cross-image corresponds to Σ -decay event

Invariant Mass of the Σ - π^+ and Σ + $\pi^$ in the d (K^- , $\Sigma\pi$)"*n*" reaction

Summary:

- > We measured $\Sigma^{\mp}\pi^{\pm}$ invariant mass spectra in the $d(K^{-}, \Sigma^{\mp}\pi^{\pm})$ "n" reaction;
- A peak structure for $\Lambda(1405)$ is observed in the $\Sigma^{\mp}\pi^{\pm}$ invariant mass spectra;
- We could increase 10 times more statistics;

We expect to measure angular dependence of widely production of $\Lambda(1405)$ in the $\mathbf{d}(\mathbf{K}^{-}, \Sigma^{\mp}\pi^{\pm})$ reaction.