The physics experiment E31 to

 search for$$
\begin{gathered}
\text { the } \Lambda(1405) \text { via the } \\
\text { d(K-, } \pi \Sigma) \text { reaction } \\
\text { at J-PARC K1.8BR. }
\end{gathered}
$$

2019/03/15

Omar Zhadyra for the J-PARC E31 collaboration Research Center for Nuclear Physics, Osaka University

Contents:

1. What is the $\boldsymbol{\Lambda (1 4 0 5) ?}$
2. J-PARC E31 2-run
3. Data analysis:

- Identification of the particles;

4. Reconstruction of the side band events
5. Summary and To Do

Motivations:

1. How are hadrons formed from quarks?
2. Are there hadrons made of more than 3 quarks?

Exotic state may give hints to solve the questions: how
 are hadrons formed from quarks and further Contains 5 quarks understanding of the strong interaction

Direct process (one step reaction): $K^{-} d \longrightarrow \Sigma+\pi-/ \Sigma-\pi+" X^{\prime \prime}$

$\Lambda(1405)$ can be formed in the collision of K with proton in the deuteron. Formation is observed by detecting its decay products Σ and π

How to measure mass:

Missing mass

Invariant mass
$\left(p_{1}+p_{2}-q_{3}\right)^{2} \equiv\left(q_{1}+q_{2}\right)^{2}$

Experimental setup

January - February, 2018

Missing neutron identification in $\mathrm{d}\left(K^{-}, n \pi^{+} \pi^{-}\right)$" $X^{\prime \prime}$

$0.9<$ mass_neutron<0.98
Selected as a neutron mass

Invariant mass of $n \pi+$ and $n \pi-$

Invariant mass of $\boldsymbol{\Sigma}-\boldsymbol{\pi}+$ and $\boldsymbol{\Sigma}+\boldsymbol{\pi}$ - with sideband (a=red, b=black, $c=b l u e) ~ e v e n t s ~ s$

Invariant mass of $\boldsymbol{\Sigma}-\boldsymbol{\pi}+$ and $\Sigma+\pi$ - with normalization of the side band
"average" $=\mathrm{b} /(\mathrm{a}+\mathrm{c})$
scaled by this formula

Invariant Mass of the $\boldsymbol{\Sigma}-\boldsymbol{\pi}^{+}$and $\boldsymbol{\Sigma}+\boldsymbol{\pi}^{-}$in the $\mathbf{d}\left(\boldsymbol{K}^{-}, \boldsymbol{\Sigma} \boldsymbol{\pi}\right) " \boldsymbol{n} "$

 reaction (acceptance is uncorrected)back ground subtracted spectrums

Summary:::

1. We have performed the physics experiment E31-2 run and obtained d(K-, $\Sigma \pi$)"n" spectrum shape;
2. All the related behaviors of the d(K-, $\Sigma \pi)$ "n" reaction are explained by one step process;
3. By using background estimation we have obtained the clear $\Lambda(1405)$ peak position.

To Do:::
Monte Carlo simulation;

- acceptance correction (current status);
- detection efficiencies for the relevant particles, including analysis efficiency;
- cross section

BACKUP

K and π peaks have seen clearly. Trig:KCDH2
Condition: T01hit, BHD mul
TOF_BHD_TO

\mathbf{K}° bar mass reconstruction

Invariant Mass of $\pi^{+} \pi^{-}\left(\mathrm{GeV} / \mathrm{c}^{\mathbf{2}}\right)$

Momentum and mass distribution

