d(K⁻,n)反応を用いた A(1405)分光実験のための 陽子検出器の開発(4)

大阪大学理学研究科RCNP 榎本 瞬 濱野博友 For J-PARC E31 collaboration

Contents

1:実験概要

▶d(K⁻,n) reaction ▶J-PARC E31 experiment 2:検出器開発 ▶テスト実験 @LEPs ▶今後の計画(実機製作) 3:まとめ

the(K-,n) reaction on Deuteron.

• P-wave,I=1 $\rightarrow \Sigma^{*}(1385) \rightarrow \pi^{0}/,\pi^{-}\Sigma^{+},\pi^{+}\Sigma^{-}$

J-PARC E31 Experiments

Spectroscopic study of Hyperon Resonances below KbarN threshold via the (K⁻,n) reaction on Deuteron.

1:Λ* 質量スペクトルを質量欠損法(Missing Mass)によって測定.

$$MM_X = \sqrt{(\vec{P}_K + \vec{P}_d - \vec{P}_n)^2}$$

•
$$\sigma_{\rm MM} \sim 9 {\rm MeV/c^2}$$
 at $P_{\rm K-} = 1.0 {\rm GeV/c}$

2:崩壊粒子検出器(CDS)によってΛ*の 崩壊モードを同定する。

∧* 崩壊モードの識別

case1: $\pi^+\Sigma^-$ and $\pi^-\Sigma^+$ $\Lambda(1405) \rightarrow \Sigma^+\pi^- \rightarrow (n\pi^+)\pi^ \Sigma^{-}\pi^{+}\rightarrow (n\pi^{-})\pi^{+}$

➡既存の検出器で十分なアクセプタンスが得られる。

case2: $\pi^{0}\Sigma^{0} \text{ and } \Lambda\pi^{0}(NR/\Sigma^{*})$ $\Lambda(1405) \rightarrow \Sigma^{0}\pi^{0} \rightarrow \Lambda\gamma\pi^{0} \rightarrow (p\pi^{-})\gamma\pi^{0}$ $NR/\Sigma(1385) \rightarrow \Lambda\pi^{0} \rightarrow p\pi^{-}\pi^{0}$

➡新たに陽子検出器が必要。

セットアップ @ 崩壊粒子検出器(CDS)

³He(K⁻,d) or d(K⁻,n) reaction $\Lambda(1405) \rightarrow \pi \Sigma \rightarrow \pi^{0} \gamma \Lambda \rightarrow 3 \gamma(p\pi^{-})$ BG:NR/ $\Sigma(1385) \rightarrow \pi^{0} \Lambda \rightarrow \pi^{0}(p\pi^{-})$

BPC & BPD : Backward Proton

BPC: vector & vertex position **BPD**: proton id(pion) & momentum =>measure energy deposit & TOF BPD Time resolution ⇔ id Λ*/BG

セットアップ @ 崩壊粒子検出器(CDS)

陽子検出器に求められる性能

3×3 mm² MPPC-50C

 3×3 mm²

ビームテスト @ LEPS

目的

- •時間分解能測定
- ·位置依存性測定

Beam condition

Particle: Momentum: Beam rate: positron 0.6[GeV/c] ~110[Hz]

時間分解能測定

(1)raw data TOF[ns](2)after correction

Run#133(y=0cm) BPD#4 (u):TRGu-d(σ)=115ps (m):TRGd-BPD(σ)=178ps (d):TRG⁺⁺ DDD(σ)=179ps

BPD#4 (σ)=158psを達成。

位置依存性測定

- BPDのy方向位置依存測定 (高さ0~16.8cm).
- ・トリガーシンチの位置は固定。

→位置によって、大きな変化はないことを確認。

Position dependence(TRGup-BPD)

2-b:Position dependence(adc-position)

mppc_top

・時間分解能の位置依存性はほ
 ぼない。

- BPD#3
 - →分解能が悪化。
 - →ゲイン調整に問題あり。
- ・ 電圧調整機構の改良
 →MPPCの電圧調整が重要。

実機デザイン

- MPPCのサイズ(6mm)がシン チレータ(5mm)より大きいた め交互に設置。
- CDCの内側(Φ=300mm)全 てを覆う。
- →5*5*340mm³×70本
- (有感領域:350×340mm²)

今後の計画(実機製作)

- セットアップ@CDS in J-PARC
- →実際に配置する場所にテスト機を 配置(2012.Feb)。
- →架台は問題なし。
- 回路製作(電圧調整、 駆動回路)
- →ノイズ対策,シールド強化
- →量産化による、機能性

BPD

駆動回路

-V 1kΩ •___/\//___

0.1µF

1:Λ(1405)分光実験(J-PARC E31)のための陽子検 出器の開発を行っている。

2:LEPSビームラインにおいてテスト実験を行った。
 →BPD単体で時間分解能σ=160psを得る。
 →位置依存性はほぼない。
 →実機として十分な性能が出ている。
 > → (4)

3:今後

→回路の製作。全数揃え、CDSにインストール。

Back up

J-PARC E31 Collaboration

- S. Ajimura¹, G. Beer², H. Bhang³, M.Bragadireanu⁸, P. Buehler⁴, L. Busso^{5,6}, M. Cargnelli⁴, S. Choi³, C. Curceanu⁸, S. Enomoto¹, D. Faso⁵, H. Fujioka¹³, Y. Fujiwara¹², T. Fukuda¹¹, C. Guaraldo⁸, T. Hashimoto¹², R. Hayano¹², T. Hiraiwa ¹³, M. Iio⁹, K. Inoue¹, N. Ishibashi¹⁷, T. Ishikawa¹², S. Ishimoto¹⁴, T. Ishiwatari⁴, K. Itahashi⁹, M. Iwai¹⁴, M. Iwasaki^{9,10}, S. Kawasaki¹, P. Kienle¹⁵, H. Kou¹⁰, J. Marton⁴, Y. Matsuda¹², Y. Mizoi ¹⁰, O. Morra⁵, T. Nagae¹³, H. Noumi ¹, H. Ohnishi⁹, S. Okada⁸, H. Outa⁹, Y. Sada¹³, A. Sakaguchi¹⁷, F. Sakuma⁹, M. Sato¹², M. Sekimoto¹⁴, H. Shi¹², D. Sirghi⁸, F. Sirghi⁸, S. Suzuki¹⁴, T. Suzuki¹², H. Tatsuno¹², M. Tokuda¹⁰, D. Tomono⁹, A. Toyoda¹⁴, K. Tsukada⁹, E. Widmann⁴, T. Yamazaki^{9,12}, K. Yoshida¹⁷, H. Yim³, B. Wünschek⁴, J. Zmeskal⁴
- 1. Research Center for Nuclear Physics, Osaka University, Japan
- 2. University of Victoria, Canada, 3. Seoul National University, South Korea
- 4. Stefan Meyer Institut fur subatomare Physik, Austria,
- 5. INFN Sezione di Torino, Italy , 6. Universita' di Torino, Italy
- 8. Laboratori Nazionali di Frascati dell'INFN, Italy
- 9. RIKEN, Japan, 10. Tokyo Institute of Technology, Japan
- 11. Osaka Electro-Communication University, Japan, 12. University of Tokyo, Japan
- 13. Kyoto University, Japan, 14. High Energy Accelerator Research Organization (KEK), Japan
- 15. Technische Universitat Munchen, Germany, 16. INAF-IFSI, Sezione di Torino, Italy
- 17. Osaka University, Japan

Identification of the decay modes: $\Lambda^* \rightarrow \Sigma^- \pi^+$ or

20

ID & Efficiency for $\Lambda^* \rightarrow \pi^0 \Sigma^0$

2-b:Position dependence(adc-position)

3quark? 5quark?

KbarNの束縛状態? 1406.5MeV/c²[1 pole?] Deeply bound KbarN state.

$$I=1 \qquad I=0 \\ \Lambda(1520),3/2^{-} KN(1432) \\ \Sigma^{*}(1385),3/2^{+} \qquad \Lambda(1405),1/2^{-} \int -27 MeV \\ \underline{\Sigma}(1192),1/2^{+} \qquad \Lambda(1116),1/2^{+}$$

Y.Akaishi & T.Yamazaki, Phys. Rev. C65(2002) 04405. Y.Akaishi & T.Yamazaki, Phys. Lett. B535 (2002) 70

・KbarNの束縛状態について知りたい。
 ・KbarNの閾値以下での反応実験
 (KbarN結合を強く反映した実験).
 →d(K-,n) reaction

T. HYODO AND A. WEISE, PNYS. REV. C/7, U35204(2008)

³He(K⁻,d) reaction @J-PARC K1.8BR

1.9 1.8 1.7

1.6 1.5 1.4 1.3

1.2

1.1

0.9

1.6

$$\begin{array}{c} \Lambda^* \longrightarrow \sum^{O} \pi^{O} , (\sum^* \longrightarrow \Lambda \pi^{O}) \\ NR/\sum(1385) \longrightarrow \Lambda \pi^{O} \longrightarrow (p\pi)\gamma \pi^{O} \\ NR/\sum(1385) \longrightarrow \Lambda \pi^{O} \longrightarrow (p\pi)\pi^{O} \\ (DH \ red \$$

BPD:TOF(Time of Flight)法によって陽子の運動量を測定

Yield estimation (E31 experiment)

Intensity	30GeV-27kW(6s)	
Secondary beam	K-:1.0GeV.c	
Beam intensity(I _b)	2.0*10^5per pulse	6s spill interval
Cross section(d σ /d Ω)	<mark>220µb/sr</mark> 97 128	$\begin{array}{l} \Lambda(1405) \rightarrow \pi + \sum - \rightarrow \pi + \pi - n \\ \Lambda(1405) \rightarrow \pi - \sum + \rightarrow \pi - \pi + n \\ \Lambda(1405) \rightarrow \pi 0 \sum 0 \rightarrow \pi 0 \pi - p \end{array}$
Solid angle($\Delta \Omega$)	0.020sr	
Decay mode efficiency(ϵ_M)	0.32 0.16 0.015	Λ (1405)→π+Σ-→π+π-n Λ (1405)→π-Σ+→π-π+n Λ (1405)→π0Σ0→π0π-p
Target(n _t)	4.1*E23	Liquid deuteron(8cm)
Yield(120shift)	~19200 ~4800 ~350	Λ(1405)→π+π-n Λ(1405)→π-π+n Λ(1405)→π0π-р

$$Y = I_b \times n_t \times \frac{d\sigma}{d\Omega} \times \Delta\Omega \times \varepsilon_R \times \varepsilon_M \times \varepsilon_A$$

R:reconstruction(0.24)A:analysis(0.9)