Spectroscopic study of Λ(1405) via the in-flight (K⁻,n) reaction on deuteron.

SHUN Enomoto

RCNP, Osaka Univ. For J-PARC E31 collaboration

> HYP2012@Barcelona Oct. 4, 2012

J-PARC E31 Collaboration

- S. Ajimura¹, G. Beer², H. Bhang³, M.Bragadireanu⁸, P. Buehler⁴, L. Busso^{5,6}, M. Cargnelli⁴, S. Choi³, C. Curceanu⁸, S. Enomoto¹, D. Faso⁵, H. Fujioka¹³, Y. Fujiwara¹², T. Fukuda¹¹, C. Guaraldo⁸, T. Hashimoto¹², R. Hayano¹², T. Hiraiwa ¹³, M. lio⁹, K. Inoue¹, N. Ishibashi¹⁷, T. Ishikawa¹², S. Ishimoto¹⁴, T. Ishiwatari⁴, K. Itahashi⁹, M. Iwai¹⁴, M. Iwasaki^{9,10}, S. Kawasaki¹, P. Kienle¹⁵, H. Kou¹⁰, J. Marton⁴, Y. Matsuda¹², Y. Mizoi ¹⁰, O. Morra⁵, T. Nagae¹³, H. Noumi ¹, H. Ohnishi⁹, S. Okada⁸, H. Outa⁹, Y. Sada¹³, K. Shirotori¹, A. Sakaguchi¹⁷, F. Sakuma⁹, M. Sato¹², M. Sekimoto¹⁴, H. Shi¹², D. Sirghi⁸, F. Sirghi⁸, S. Suzuki¹⁴, T. Suzuki¹², H. Tatsuno¹², M. Tokuda¹⁰, D. Tomono⁹, A. Toyoda¹⁴, K. Tsukada⁹, E. Widmann⁴, T. Yamazaki^{9,12}, K. Yoshida¹⁷, H. Yim³, B. Wünschek⁴, J. Zmeskal⁴
- 1. Research Center for Nuclear Physics, Osaka University, Japan
- 2. University of Victoria, Canada, 3. Seoul National University, South Korea
- 4. Stefan Meyer Institut fur subatomare Physik, Austria,
- 5. INFN Sezione di Torino, Italy , 6. Universita' di Torino, Italy
- 8. Laboratori Nazionali di Frascati dell'INFN, Italy
- 9. RIKEN, Japan, 10. Tokyo Institute of Technology, Japan
- 11. Osaka Electro-Communication University, Japan, 12. University of Tokyo, Japan
- 13. Kyoto University, Japan, 14. High Energy Accelerator Research Organization (KEK), Japan
- 15. Technische Universitat Munchen, Germany, 16. INAF-IFSI, Sezione di Torino, Italy
- 17. Osaka University, Japan

Contents

1:Introduction

- $-\Lambda(1405)$
- The(K⁻,n) reaction on deuteron.

2:J-PARC E31 experiment

- Status
- Future plan & schedule

3:Summary

Is A(1405) KbarN bound state ?

1406MeV/c²[one pole?] Deeply bound KbarN state.

Y. Akaishi & T. Yamazaki, Phys. Rev. C65, 04405 (2002). Y. Akaishi & T. Yamazaki, Phys. Lett. B535, 70 (2002)

1420MeV/c²[two pole?]

Chiral Unitary Model predicted.

T. Hyodo, D. Jido, and A. Hosaka, Phys. Rev. Lett. 97, 192002(2006);

T. Hyodo, D. Jido and A. Hosaka, Phys. Rev. D75, 034002(2007).

T. Hyodo and A. Weise, Phys. Rev. C77, 035204(2008)

Recently Experiment data $pp \rightarrow pK^+\pi^0\Sigma^0$, $\pi\Sigma$ MM spec., Zychor et al, PLB660(08)167 $\gamma p \rightarrow K^+\pi\Sigma$, $\pi\Sigma$ MM spec., M. Niiyama et al, PRC78(08)035202 $\gamma p \rightarrow K^+\pi\Sigma$, $\pi\Sigma$ IM spec., K. Moriya et al, PTPS186(10)234

Direct KbarN scattering to form $\Lambda(1405)$ below KbarN threshold must be investigated.

4

the (K⁻,n) reaction on deuteron.

d(K-,n) is KbarN direct reaction. ($\Lambda(1405)$ can not couple to KbarN in a free space.)

d(K-,n) may enhance the S-wave scattering at $\Theta_n = 0$ degree.

Expected missing mass spectra in d(K⁻,n)

Calculated by data [1] / chiral unitary model [2] .

[1]R. J. Hemingway, Nucl. Phys. B 253, 742 (1985)[2]D. jido, E. Oset and T. Sekihara, Eur. Phys. J A42(2009) 257

J-PARC K1.8BR beam line[Jun. 2012]

beam dump beam sweeping magnet neutron counter & liquid ³He-target **TOFstop/proton counter** system ³He(K⁻,n) reaction Sada, Search for "Kpp", [parallel-VI] CDS CDS[E15] Cylindrical Detector Hodoscope (CDH) Cylindrical Drift Chamber (CDC) beam line spectrometer n 3He K⁻

Experimental Setup for J-PARC E31

Almost the same as J-PARC E15 setup . add to only 3 item Liq. D₂ target / BPC / BPD

liquid D₂-target System

CDS+a

BPC/BPD

To identify backward emitted proton in $\Lambda(1405) \rightarrow \pi^0 \Sigma^0$.

 $π^0 \Sigma^0$ final state Λ(1405)→ $Σ^0$ π⁰→Λγπ⁰→ (**p** π⁻)γ π⁰

Backward Proton Detector (BPD & BPC)

- BPD (Backward Proton Detector)
 ✓70 plastic scintillators
 ✓MPPC
 - √σ(TOF_{T0-BPD}) = 160ps
 - ▷ Measure a ToF.
 - Determine momentum.

BPC (Backward Proton Chamber) ✓ wire drift chamber ✓ planer type, 8 layers

Track a proton trajectoryDetermine a decay vertex.

BPO

Plan & Schedule

• J-PARC E31 Proposed beam Time Request:

120shifts, with 27kw primary proton

~19200[Λ(1405)→ $\pi^{+}\Sigma^{-}$],~4800[Λ(1405)→ $\pi^{-}\Sigma^{+}$],~350[Λ(1405)→ $\pi^{0}\Sigma^{0}$]

- Pilot run(plan)
- Wish to have a short term run before summer 2013.
- When 1week*20kW.....
 - Confirm that the d(K-,n) reaction really enhances an Swave KbarN scattering to form Λ(1405).
 - Collect 2400 $\pi^+\Sigma^-$ (>old Bubble Chamber Exp.), 600 $\pi^-\Sigma^+$ (new)
 - \rightarrow can provide new data in a short time!!

Full scale run

- Collect $\pi^0 \Sigma^0$ mode.

 \rightarrow 2014 spring~ (after J-PARC long shutdown).

Summary

▷We propose to study $\Lambda(1405)$ hyperon resonance via the d(K-,n) reaction.

- KbarN $\rightarrow \pi\Sigma$ scattering below KbarN threshold
- how $\Lambda(1405)$ is dynamically formed from initial KbarN state.
- ▷ E31 is ready to run !!
 - (E15setup), D₂target, BPC and BPD are ready

>We wish to start data acquisition before summer 2013.

- We are sure to provide new data on $\Lambda(1405) \rightarrow \pi^- \Sigma^+$ and $\pi^- \Sigma^+$ in a short time, and $\Lambda(1405) \rightarrow \pi^0 \Sigma^0$ finally.

Moltes gracies !

BACK UP

Liq. D2 target

 4K G-M refrigerator to liquefy

> ✓ Easy to control temperature w/ heater @ H. E.

- Demonstration to liquefy Hydrogen.
 - ✓ Temp. can be controlled around 20K.

	H2	D2
BP	20.3K	23.8K
MP	14.0K	18.7K

• Simple the reaction mechanism. ->d(K⁻,n) π ⁺ Σ ⁻ at P_{K-}=800MeV/c

S-wave KbarN scattering is dominant at $\theta_n = 0$ degree.

ID & Efficiency for $\Lambda^* \rightarrow \pi^0 \Sigma^0$

E31 experiment

Intensity	30GeV-27kW(6s)	
Secondary beam	K-:1.0GeV.c	
Beam intensity(lb)	2.0*10^5per pulse	6s spill interval
Cross section(dσ/dΩ)	220µb/sr 97 128	$\begin{array}{l} \Lambda(1405) \rightarrow \pi + \sum \rightarrow \pi + \pi - n \\ \Lambda(1405) \rightarrow \pi - \sum + \rightarrow \pi - \pi + n \\ \Lambda(1405) \rightarrow \pi 0 \sum 0 \rightarrow \pi 0 \pi - p \end{array}$
Solid angle($\Delta \Omega$)	0.020sr	
Decay mode efficiency(ϵ_M)	0.32 0.16 0.015	$\begin{array}{l} \Lambda(1405) \rightarrow \pi + \sum \rightarrow \pi + \pi - n \\ \Lambda(1405) \rightarrow \pi - \sum + \rightarrow \pi - \pi + n \\ \Lambda(1405) \rightarrow \pi 0 \sum 0 \rightarrow \pi 0 \pi - p \end{array}$
Target	4.1*10^23	Liquid deuteron(8cm)
Yield(120shift)	~19200 ~4800 ~350	Λ(1405)→π+π-n Λ(1405)→π-π+n Λ(1405)→π0π-р

$$Y = I_b \times n_t \times \frac{d\sigma}{d\Omega} \times \Delta\Omega \times \varepsilon_R \times \varepsilon_M \times \varepsilon_A$$

R:reconstruction(0.24)A:analysis(0.9)