5th Joint Meeting of NPDs of APS and JPS@Hawaii October 23-27, 2018

$\pi\Sigma$ spectra in the Kaon-Induced Reaction on Deuteron

Hiroyuki Noumi RCNP, Osaka Univ./IPNS, KEK for the E31 collaboration

$\Lambda(1405): 1405.1^{+1.3}_{-0.9} \text{ MeV (PDG)}$ $J^{p} = \frac{1}{2}, I = 0, M_{\Lambda(1405)} M_{K^{bar_{N}}}, \text{ lightest in neg. parity baryons}$

$\Lambda(1405)$: Double pole? $J^{p} = \frac{1}{2}$, I = 0, $M_{\Lambda(1405)} < M_{K^{bar}N}$, lightest in neg. parity baryons

LQCD Evidence that $\Lambda(1405)$ is a K^{bar}N molecule!

 Study of K^{bar}N scattering below the K^{bar}N thres. are important.

E31 aims at:

■ measuring an *S*-wave $\overline{K}N \to \pi\Sigma$ scattering below the $\overline{K}N$ threshold in the $d(K^{-},n)\pi\Sigma$ reactions at a forward angle of *n*.

ID's all the final states to decompose the I=0 and 1 ampl's.

$\pi^{\pm}\Sigma^{\mp}$	I=0, 1	Λ (1405) (I=0, S wave), non-resonant[I=0/1] (Σ(1385) (I=1, P wave) to be suppressed)
$\pi^-\Sigma^0$ $[\pi^-\Lambda]$	I=1	non-resonant (Σ (1385) to be suppressed) $d(K^{-},p)\pi^{-}\Sigma^{0}[\pi^{-}\Lambda]$
$\pi^0 \Sigma^0$	I=0	Λ(1405) (I=0, S wave) , non-resonant

E31 aims at:

■ measuring an *S*-wave $\overline{K}N \to \pi\Sigma$ scattering below the $\overline{K}N$ threshold in the $d(K^{-},n)\pi\Sigma$ reactions at a forward angle of *n*.

ID's all the final states to decompose the I=0 and 1 ampl's.

$\pi^{\pm}\Sigma^{\mp}$	l=0, 1	Λ (1405) (I=0, S wave), non-resonant[I=0/1] (Σ(1385) (I=1, P wave) to be suppressed)
$\pi^-\Sigma^0$ $[\pi^-\Lambda]$	I=1	non-resonant (Σ (138 J) K • COUC) $d(K^{-},p)\pi^{-}\Sigma^{0}[\pi^{-}\Lambda]$
$\pi^0 \Sigma^0$	I=0	Λ(1405) (I=0, S way S. Kawasaki

Exp. Setup for E31 at the J-PARC K1.8BR B.L.

E31 Run History D

E31 run		Beam Power	Beam Time (# of Kaons)	Executed/ Proposed
pre	May 2015	27 kW	2.2d	~5%
1 st	May-June 2016	43 kW	~7d (14.5 G)	~30%
2 nd	Apr.2017	44 kW	0.5d(start up)	~30%
2 ^{nd'}	JanFeb. 2018	51 kw 18.2	~21.5d (39.2 G)	100%
	A Star		LJEBEN	

mets

Event topology of $d(K^-, n)X_{\pi^{\pm}\Sigma^{\mp}}$

BG Process: $d(K^-, nK^0)$ "n", $d(K^-, \Sigma^{\pm}\pi^{\mp})$ "n"

$\pi^+\Sigma^-/\pi^-\Sigma^+$ Mode (I = 0, 1) $\frac{d\sigma}{d\Omega} \left(\pi^{\pm} \Sigma^{\mp} \right) \propto \frac{1}{3} |f_{I=0}|^2 + \frac{1}{2} |f_{I=1}|^2 \pm \frac{\sqrt{6}}{3} Re(f_{I=0} f_{I=1}^*)$ 40 K^-p PDG value 35 2nd Ru ata D d[⊬]σ dMdΩ [µb/MeVsr] 30 reliminary 0 25 20 15 10 5 1.48 1.5 1.38 .42 1.44 1.46 $\pi \Sigma$ mass [GeV/c²]

$\pi^+\Sigma^-/\pi^-\Sigma^+$ Mode (I = 0, 1) $\frac{d\sigma}{d\Omega} \left(\pi^{\pm} \Sigma^{\mp} \right) \propto \frac{1}{3} |f_{I=0}|^2 + \frac{1}{2} |f_{I=1}|^2 \pm \frac{\sqrt{6}}{3} Re(f_{I=0} f_{I=1}^*)$ 4U 2nd Run K^-p Data PDG value 35 preliminary 1 st Run Data d^rσ [μb/MeVsr] 30 25 20 1510 1.38 .42 44 1.46 1.48 1.5 .36 $\pi \Sigma$ mass [GeV/c²]

Event topology of $d(K^-, n)X_{\pi^0\Sigma^0}$

BG Process: $d(K^{-}, n) X_{\pi^{0}\Lambda}, d(K^{-}, n) X_{\pi^{0}\pi^{0}\Lambda}, d(K^{-}, \Sigma^{-}p) X$

 $d(K^-, n)\pi^0\Sigma^0$ vs $d(K^-, n)\pi^-\Sigma^+$

$\pi^{0}\Sigma^{0}(I=0)$ $\pi^{-}\Sigma^{+}$ Mode 2^{nd} Run Data preliminary

Consistency in the $\pi^{\pm}\Sigma^{\mp}/\pi^{0}\Sigma^{0}$ Mode $\frac{1}{2} \times (\pi^{+}\Sigma^{-} + \pi^{-}\Sigma^{+}) \sim \frac{1}{3} |f_{I=0}|^{2} + \frac{1}{2} |f_{I=1}|^{2}$ 2nd Run Data preliminary

$$\frac{d\sigma}{d\Omega}(\pi^0\Sigma^0) \sim \frac{1}{3}|f_{I=0}|^2$$

Comparison w/ theory

Comparison w/ theory

Comparison w/ theory

Summary

• Data analysis of the E31 2nd Run is in progress.

39.2 G kaons were irradiated on deuteron.

- We first measured the $\pi^{\pm}\Sigma^{\mp}$ and $\pi^{0}\Sigma^{0}$ mass spectra followed by the Kaon-induced reaction on deuteron.
- We confirm
 - Interference btw I=0 and 1 amplitudes in the $\pi^{\pm}\Sigma^{\mp}$ modes
 - Dominance of I=0 amp. in the $\overline{K}N \rightarrow \pi\Sigma$ scattering.
- We compare w/ a theoretical calculation.
 - The two step process, $\overline{KN} \rightarrow \pi\Sigma$ followed by $K^-N \rightarrow n\overline{K}$ on deuteron, well explains a gross feature of observed spectra.
 - Pole positions related to $\Lambda(1405)$ MUST be extracted so as to reproduce the observed spectra further.

Backup

$\pi^+\Sigma^-/\pi^-\Sigma^+$ Mode separation (template fitting, Run78)

