Spectroscopic study of Lambda(1405) via the (K-,n)reaction on deuteron.

Shun Enomoto RCNP,Osaka.University For the J-PARC E31 collaboration

Baryons'10@Osaka.Univ 2010/12/10

Contents

- Introduction

 -Λ(1405)
 -(K⁻,n) reaction on deuteron.
- J-PARC E₃₁ experiments

 Experimental method
 (identify I=o state in KbarN->πΣ process)
- Preparation status
 Development detector
- Summary

Introduction

Λ(1405)

- 3quark?5quark?
- KbarN
- 1406.5MeV/c²[one pole?]

A spectroscopic study of Λ(1405) directly coupled to KbarN is desired. KbarN scattering below KbarN threthold.

 \rightarrow d(K-,n) Λ * reaction

Chiral Unitary Model predicted.

T. Hyodo, D. Jido, and A. Hosaka, Phys. Rev. Lett. 97, 192002(2006);

T. Hyodo, D. Jido and A. Hosaka, Phys. Rev. D75, 034002(2007).

T. Hyodo and A. Weise, Phys. Rev. C77, 035204(2008)

the(K-,n) reaction on Deuteron.

Motivation

To clarify whether Λ(1405) is KbarN resonant state.

J-PARC E31 experiments

and the

J-PARC E₃₁ Collaboration

- S. Ajimura¹, G. Beer², H. Bhang³, M.Bragadireanu⁸, P. Buehler⁴, L. Busso^{5,6}, M. Cargnelli⁴, S. Choi³, C. Curceanu⁸, S. Enomoto¹, D. Faso⁵, H. Fujioka¹³, Y. Fujiwara¹², T. Fukuda¹¹, C. Guaraldo⁸, T. Hashimoto¹², R. Hayano¹², T. Hiraiwa¹³, M. lio⁹, K. Inoue¹, N. Ishibashi¹⁷, T. Ishikawa¹², S. Ishimoto¹⁴, T. Ishiwatari⁴, K. Itahashi⁹, M. Iwai¹⁴, M. Iwasaki^{9,10}, S. Kawasaki¹, P. Kienle¹⁵, H. Kou¹⁰, J. Marton⁴, Y. Matsuda¹², Y. Mizoi¹⁰, O. Morra⁵, T. Nagae¹³, H. Noumi¹, H. Ohnishi⁹, S. Okada⁸, H. Outa⁹, Y. Sada¹³, A. Sakaguchi¹⁷, F. Sakuma⁹, M. Sato¹², M. Sekimoto¹⁴, H. Shi¹², D. Sirghi⁸, F. Sirghi⁸, S. Suzuki¹⁴, T. Suzuki¹², H. Tatsuno¹², M. Tokuda¹⁰, D. Tomono⁹, A. Toyoda¹⁴, K. Tsukada⁹, E. Widmann⁴, T. Yamazaki^{9,12}, K. Yoshida¹⁷, H. Yim³, B. Wünschek⁴, J. Zmeskal⁴
- 1. Research Center for Nuclear Physics, Osaka University, Japan
- 2. University of Victoria, Canada, 3. Seoul National University, South Korea
- 4. Stefan Meyer Institut fur subatomare Physik, Austria,
- 5. INFN Sezione di Torino, Italy , 6.Universita' di Torino, Italy
- 8. Laboratori Nazionali di Frascati dell'INFN, Italy
- 9. RIKEN, Japan, 10. Tokyo Institute of Technology, Japan
- 11. Osaka Electro-Communication University, Japan, 12. University of Tokyo, Japan
- 13. Kyoto University, Japan, 14. High Energy Accelerator Research Organization (KEK), Japan
- 15. Technische Universitat Munchen, Germany, 16. INAF-IFSI, Sezione di Torino, Italy
- 17. Osaka University, Japan

J-PARC E₃₁ Experiments

Spectroscopic study of Hyperon Resonances below KbarN threthold via the (K^{-},n) reaction on Deuteron.

• To measure Λ^* mass spectra by Missing Mass .

$$MM_{X} = \sqrt{(\vec{P}_{K} + \vec{P}_{d} - \vec{P}_{n})^{2}}$$

$$\cdot \sigma_{MM} \sim 9 \text{MeV/c}^{2} \text{ at } P_{K-} = 1.0 \text{GeV/c}$$

$$\downarrow \Sigma^{-}\pi^{+}, \Sigma^{+}\pi^{-} \rightarrow I = 0 \quad \Lambda^{*}$$

$$\downarrow I = 1 \quad NR$$

$$\downarrow I = 1 \quad \Sigma^{*}$$

$$\Sigma^{0}\pi^{0} \quad \rightarrow I = 0 \quad \Lambda^{*}$$

$$\Lambda\pi^{0} \quad \rightarrow \text{NR or } \Sigma^{*}$$

 $\Lambda \pi^{0}$

neutron counter

cange

I.D target

UEAL

DARC K1 8

beam

NEC/TOKI

2010/10/25

Decay particle detector(CDS)

Identification of Λ^* decay mode.

case1:

$$\pi^{+}\Sigma^{-}$$
 and $\pi^{-}\Sigma^{+}$
 $\Lambda(1405) \rightarrow \Sigma^{+}\pi^{-} \rightarrow (n\pi^{+})\pi^{-}$
 $\Sigma^{-}\pi^{+} \rightarrow (n\pi^{-})\pi^{+}$

case2: $\pi^{o}\Sigma^{o} \text{ and } \Lambda\pi^{o}(NR/\Sigma^{*})$ $\Lambda(1405) \longrightarrow \Sigma^{o}\pi^{o} \longrightarrow \Lambda\gamma\pi^{o} \longrightarrow (p\pi^{-})\gamma\pi^{o}$ $NR/\Sigma(1385) \longrightarrow \Lambda\pi^{o} \longrightarrow p\pi^{-}\pi^{o}$

Detection of the $\Lambda * - \sum \pi^+$ and $\sum \pi^-$ modes

12

missID($\Sigma^+\pi^-$)=($\Sigma^-\pi^+$ [①])/($\Sigma^+\pi^-$ [②])

BPD measures to momentum of proton TOF methods.

ID & Efficiency for $\Lambda^* \rightarrow \pi^{\circ} \Sigma^{\circ}$

 $\Lambda(1405) \rightarrow \Sigma^{\circ} \pi^{\circ} \rightarrow \Lambda \gamma \pi^{\circ} \rightarrow (p \pi^{-}) \gamma \pi^{\circ}$ $NR/\Sigma(1385) \rightarrow \Lambda \pi^{\circ} \rightarrow p \pi^{-} \pi^{\circ}$

Backward Proton Detector(BPD)

- TOF for proton
 ->Scintillation Hodoscopes with MPPC.
- Beam test:

Time Resolution(BPD-To) σ~250ps

Prototype(BPD): 5mm² × 400mm Scintillator with MPPC-50µm⁴

Backward Proton Chamber(BPC)

- Outside diameter $\phi = 168$ mm(z-TPC inside diameter $\phi = 170$ mm)

Summary

- We propose to study Λ(1405) hyperon resonance via the d(K-,n) reaction.
 - →To investigate Λ(1405) in the coupled channel KbarN->πΣ system.

- We found that the J-PARC E15 setup has sufficient detection efficiency to identify $\Lambda^* \pi^+ \Sigma^-$ and $\Lambda^* \pi^- \Sigma^+$ clearly.
- We introduce BPD & BPC to identify $\Lambda^*\text{->}\pi\text{o}\Sigma\text{o}$ clearly .

Finish

Thank you for listening.

Back up

F21 experiment

Intensity	30GeV-27kW(6s)	
Secondary beam	K-:1.0GeV.c	
Beam intensity(Ib)	2.0*10^5per pulse	6s spill interval
Cross section(dσ/dΩ)	220µb/sr 97 128	Λ(1405)→π+∑-→π+π-n Λ(1405)→π-∑+→π-π+n Λ(1405)→πο∑ο→ποπ-p
Solid angle(ΔΩ)	0.020Sr	
Decay mode efficiency(ε _M)	0.32 0.16 0.015	Λ(1405)→π+∑-→π+π-n Λ(1405)→π-∑+→π-π+n Λ(1405)→πο∑ο→ποπ-p
Target	4.1*10^23	Liquid deuteron(8cm)
Yield(120shift)	~19200 ~4800 ~350	Λ(1405)→π+π-n Λ(1405)→π-π+n Λ(1405)→ποπ-p

$$Y = I_b \times n_t \times \frac{d\sigma}{d\Omega} \times \Delta\Omega \times \varepsilon_R \times \varepsilon_M \times \varepsilon_A$$

R:reconstruction(0.24)A:analysis(0.9)

S-wave KbarN scattering is dominant at $\theta_n = 0$ degree.

Contamination(Mis-identification) ~a few%²²

• Clebsch-Gordan coeficients

$$\begin{aligned} |J,M\rangle &= \Sigma C_{j_1m_1,j_2m_2}^{J,M} |j_1,m_1\rangle |j_2,m_2\rangle \\ \Sigma^+,\Sigma^0,\Sigma^- &= (1,1), (1,0), (1,-1) \\ \pi^+,\pi^0,\pi^- &= (1,1), (1,0), (1,-1) \end{aligned} \qquad \begin{aligned} |2,0\rangle &= \sqrt{\frac{1}{6}}\pi^-\Sigma^+ & \sqrt{\frac{2}{3}}\pi^0\Sigma^0 & \sqrt{\frac{1}{6}}\pi^+\Sigma^- \\ |1,0\rangle &= -\sqrt{\frac{1}{2}}\pi^-\Sigma^+ & 0 & \sqrt{\frac{1}{2}}\pi^+\Sigma^- \\ |0,0\rangle &= \sqrt{\frac{1}{2}}\pi^-\Sigma^+ & -\sqrt{\frac{2}{3}}\pi^0\Sigma^0 & \sqrt{\frac{1}{3}}\pi^+\Sigma^- \end{aligned}$$

• $\Sigma(1385)[l=1]$ can not decay $\pi^{o}\Sigma^{o}$.

ັ

Detection of the $\Lambda^* \rightarrow \Sigma^-\pi^+$ and $\Sigma^+\pi^-$ modes

$$\Lambda^* \rightarrow \Sigma^o \pi^o$$
, $(\Sigma^* \rightarrow \Lambda \pi^o)$

 $\Lambda(1405) \rightarrow \Sigma^{\circ} \pi^{\circ} \rightarrow \Lambda \gamma \pi^{\circ} \rightarrow (p \pi^{-}) \gamma \pi^{\circ}$ NR/ $\Sigma(1385) \rightarrow \Lambda \pi^{\circ} \rightarrow (p\pi^{-}) \pi^{\circ}$

BPD measure s to momentum of proton TOF methods.

Decay mode[$\Lambda(1405)/\Sigma(1385)$]

- $\Lambda(1405) \rightarrow \pi^{-}\Sigma^{+} \rightarrow \pi^{-}(p\pi^{0}) [51.57\%] \text{ or } \pi^{-}(n\pi^{+}) [48.31\%] \pi^{+}\Sigma^{-} \rightarrow \pi^{+}(n\pi^{-}) [99.84\%] \pi^{0}\Sigma^{0} \rightarrow \pi^{0}\Lambda\gamma \rightarrow \pi^{0}(n\pi^{0}) [35.8\%] \text{ or } \pi^{0}(p\pi^{-})\gamma [63.9\%]$
- Σ(1385)→πΛ[87.0%]
 →πΣ[11.7%]

Cylindrical Detector System

A newly developed system for invariant mass study

Surface area : 3.2m x 1.5m
missing mass resolution for K⁻pp

 σ = 9.2 MeV/c² (P_n=1.3 GeV/c, σ_{TOF} =150 ps)

the(K-,n) reaction on Deuteron.

the(K-,n) reaction on Deuteron.

S-wave KbarN scattering is dominant at $\theta_n = o$ degree

Possible ID of I=o in KbarN-> $\pi\Sigma$ • S-wave,I=o $\rightarrow \Lambda^*(1405) - \pi^0\Sigma^0, \pi\Sigma^+, \pi^+\Sigma^-$ • S-wave,I= • P-wave,I=1 $\rightarrow \Sigma^*(1305) - \pi^0\Sigma^0, \pi\Sigma^+, \pi^+\Sigma^-$