
Spectroscopic study of the $\Lambda(1405)$ via the d(K-,n) reaction

Shingo Kawasaki (RCNP, Osaka University) for the J-PARC E31 Collaboration

A chiral unitary model claims that the $\Lambda(1405)$ consists of two states (KbarN state and $\pi\Sigma$ state). Experimental study of KbarN coupled to the $\Lambda(1405)$ is desired. We proposed to study the $\Lambda(1405)$ resonance via the d(K-,n) reaction at the J-PARC (J-PARC E31)[1]. In this reaction, a neutron is kicked by an incident kaon at a forward angle and the kaon is slow down to form the $\Lambda(1405)$ with a residual nucleon. We measure the $\Lambda(1405)$ spectrum in a missing mass of the d(K-,n) reaction. we also identify the three decay modes of the $\Lambda(1405)$, $\Sigma^-\pi^+$, $\Sigma^+\pi^-$, and $\Sigma^0\pi^0$ to decompose scattering amplitudes of I=0, 1 and the their interference term in the spectrum. In this contribution, an overview of the experiment and the status will be presented.

Experiment E31 in J-PARC at K1.8 beam line

• We measure the $\Lambda(1405)$ spectrum in a missing mass of the d(K-,n) reaction, so forward scattered neutron is

• Such a meson-baryon molecular state provide important information to understand mechanism of formation of hadrons from quarks.

Strategy of investigation of $\Lambda(1405)$ as KbarN

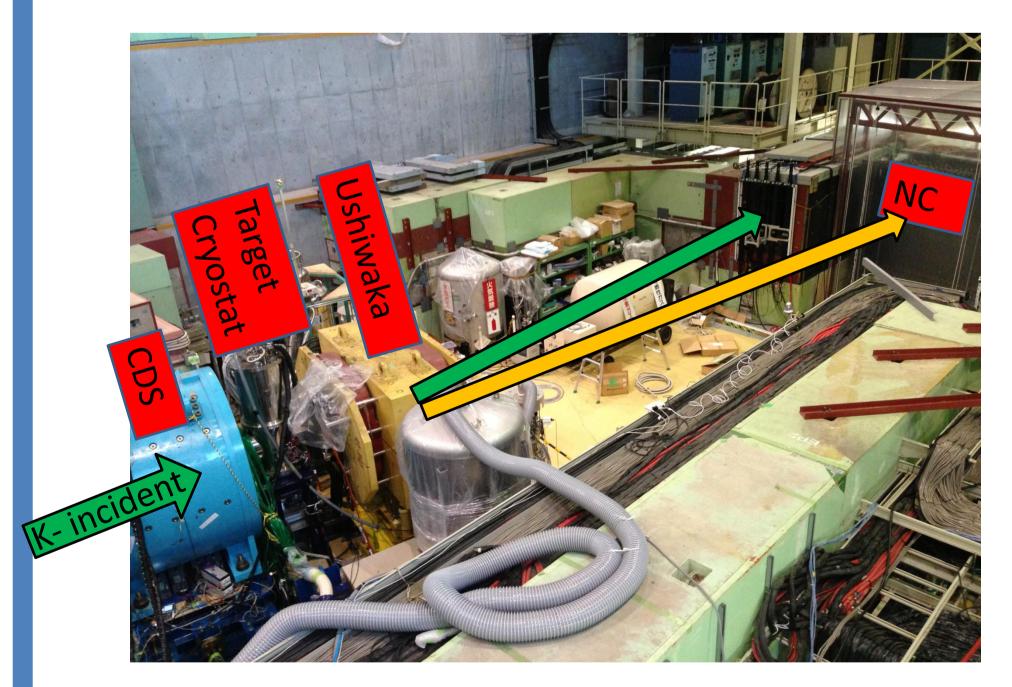
The spectra of the $\Lambda(1405)$ depend on the channels. If $\Lambda(1405)$ is generated dynamically in KbarN scattering, It is expected that the resonance position would be ~1420 MeV.

We study (K-,n) reaction on deuteron target.

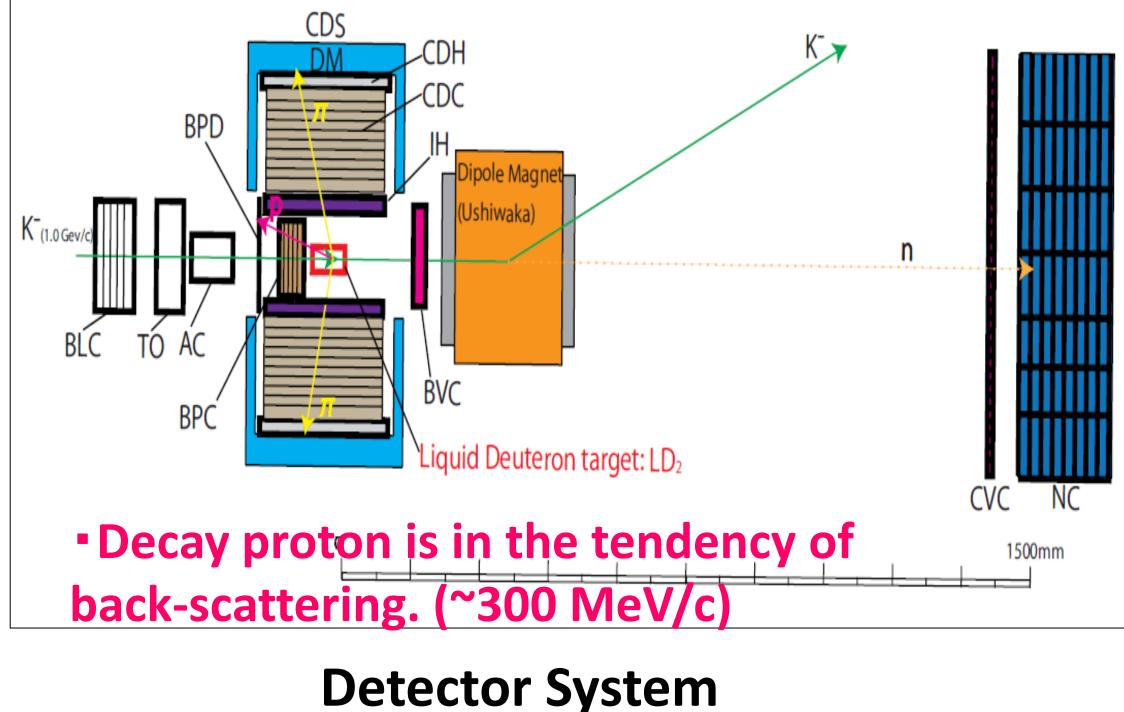
K-	d	Л*[К-р]	r
	+	reaction +	

Λ(1405) is located below the KbarN threshold

KbarN Threshold neutron takes energy out 1432 MeV from kaon so that $\Lambda(1405)$ resonance state Λ(1405) is realized virtually.


detected. $MM(Y) = \sqrt{(P_d + P_{K-} - P_n)^2}$

• We identify the three decay modes to decompose scattering amplitude I=0,I=1 and interference term from the invariant-mass spectra. Then I=0 contributions is projected out.


Detector System

•NC : TOF of kicked neutron. dt~120 ps σ_{mm} ~10 MeV/ c^2 • CDH : TOF of decay π^{\pm} . dt~71 ps • CDC : Tracking of decay π^{\pm} . dx~200 μm • BPD : TOF of decay proton. dt~200 ps • BPC : Tracking of decay proton. dx~150 μm BPC is also used for measuring the vertex of the hyperon decay[3].

	Identification of every decay mode Detection
2	Decay mode of hyperon(Y) generated by the reaction d(K-,n) eff[%]/misID[%]
	$\mathbf{Y} \rightarrow \pi^0, \Sigma^0 \rightarrow \pi^0, \gamma, \Lambda \rightarrow \pi^0, \gamma, \pi^-, \mathbf{p} (I = 0 only) \text{ (1)} ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$
	$\rightarrow \pi^+, \Sigma^- \rightarrow \pi^+, \pi^-, n$ (I = 0,1) (2) ~25/~10
	$\rightarrow \pi^{-}, \Sigma^{+} \rightarrow \pi^{-}, \pi^{+}, n$ (I = 0,1) (3) ~25/~10
	$\rightarrow \pi^{-}, \pi^{0}, p \qquad (I = 0, 1) \qquad (4)$
	$\rightarrow \pi^{0}, \Lambda \rightarrow \pi^{0}, \pi^{-}, p \qquad (I = 1 \text{ only}) \ (5)$

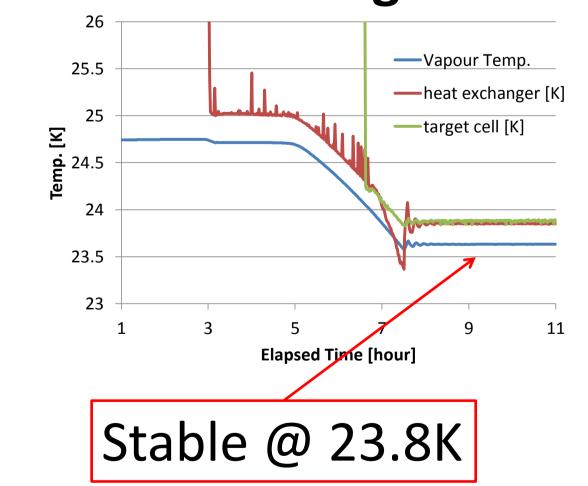
K1.8BR Area

- $(1 \leftrightarrow 4)$, (5) identified by the missing mass of Y and $(\pi^- + p)$.
- $(1,5 \leftrightarrow 4)$ identified by the invariant mass of π^- and p.
- (2), $3 \leftarrow \rightarrow 1$, (4), (5) identified by detecting π^{\pm} .

Target Cell

The cooling test has been finished

[2]


 $2 \leftarrow 3$ identified by the missing mass of Y and π^+ and Y and π^- .

Target System

successfully !!

Liquefaction of deuterium gas

Summary • It is obtaining the mass spectrum of $\Lambda(1405)$ and proving whether a chiral unitary model is right as a structual model of $\Lambda(1405)$ from the mass and decay width. All the decay modes of the hyperon generated by the reaction can be identified

2013/07/18 Thu. APPC12 Makuhari Messe Chiba, Japan

Preparation of the experiment is complete.

Reference

[1] J-PARC E31 proposal : http://j-parc.jp/NuclPart/pac 0907/pdf/Noumi.pdf [2]T.Hyodo and A.Weise, Phys.RevC77, 035204 (2008) [3]PTEP arXiv:1206.0077v1