K⁻d 反応の異なる運動量移行領域での ^{π±Σ[∓]不変質量分布</sub>}

浅野 秀光 (理研) for the J-PARC E31 collaboration

q vs $\pi^{\pm}\Sigma^{\mp}$ Invariant Mass analysis

Inspired by the J-PARC E15 ("K⁻pp" search) analysis (PRC 102 (2020) 044002)

Neutron ID by Cylindrical Detector System.

$\pi^{\pm}\Sigma^{\mp}$ n state ID

d(K⁻, $\pi^+\pi^-$ n)"X" Missing Mass

q vs IM($\pi^-\Sigma^+$) cross section

q vs IM($\pi^+\Sigma^-$) cross section

IM($\pi^{\mp}\Sigma^{\pm}$) spectrum

IM($\pi^{\mp}\Sigma^{\pm}$) spectrum (large q region)

 Λ(1520)(3/2-) seen -> d-wave contribution
Σ(1385) ⁰(3/2+) -> π[±]Σ[∓] (B.R. 12%) estimated from K⁻d -> Σ(1385)⁻p -> Λπ⁻ p × 1/2 (Isospin relation)

 $m_{\chi}^{2.4}$ (GeV/ c^2)

2.8

 $m_X^{2.4}$ (GeV/ c^2)

2.8

2.2

Different structure from "K⁻pp" in the spread of "q"

Important to understand both q distribution in a unified way

Future plan

A New Cylindrical Detector System

A new 4π spectrometer with n/ γ detection capability

Ref: E80 proposal (Search for K-ppn -> Λd/Λpn) https://j-parc.jp/researcher/Hadron/en/pac_2007/pdf/P80_2020-10.pdf High statistic data of K⁻d

KN interaction: q vs C.S.(Λ 1405)

まとめ

$K^{-}d$ 反応で生じる $\pi^{\pm}\Sigma^{\mp}$ 不変質量分布の運動量移行依存性を測定した

今後: 角分布も理論と比較

backup

E31 analysis in different kinetic regions

 $\pi^{-}\Sigma^{+} + \pi^{+}\Sigma^{-}$ charge sum spectrum

do/dM ~ $A|T_2^{I=0}|^2 + B|T_2^{I=1}|^2$

Acceptance map

q=0.3 , M = 1.42 On = 11° (lab) ,17° (CM)

q=0.65 , M = 1.42 Θn = 36[°] (lab) ,57[°] (CM)