Systematic investigation of the light kaonic nuclei (E80@K1.8BR)

F. Sakuma, RIKEN

Introduction • K1.8BR Beam Line Apparatus Summary

- Beam Line Spectrometer
 Cryogenic Target System
 Cylindrical Detector System
 Trigger and DAQ System

1

E80 Experiment (K^{bar}NNN search)

E80 investigates the **K**⁻**ppn** bound state, toward the systematic study of the kaonic nuclei

- Construct a large solenoid spectrometer
- Improve kaon yield by modifying the K1.8BR

E80 (L ⁴ He)						
Expected result	Establishment of K ⁻ ppn ($\Lambda d/\Lambda pn$)					
Start date	FY2025-26					
Beam intensity	90kW					
Beam time	1+1+3 weeks					

Introduction

Kaonic Nuclei

J-PARC E15 Experiment

³He(*in-flight* K⁻,n) reaction @ 1.0 GeV/c **U** 2NA and Y decays can be discriminated kinematically

Exclusive ³He(K⁻,Λp)n

Need Further Investigations

to establish the kaonic nuclei

- **A(1405)** state
 - $-\overline{K}N$ qusi-bound state as considered?
 - Relation between $\overline{K}N$ and $\overline{K}NN$?
- Further details of the $\overline{K}NN$
 - Spin and parity of the "K⁻pp"?
 - Really compact and dense system?
- Heavier kaonic nuclei?
 - Mass number dependence?
- Double kaonic nuclei?
 - Much compact and dense system?

Strategy of the New Project

- for systematic study from the $\overline{K}N$ to $\overline{K}NNNN$ systems -

		Reaction	Decays	Кеу	Experiment
	$\overline{K}N$	d(K⁻,n)	$\pi^{\pm 0}\Sigma^{\mp 0}$	n/γ identification	Future
000	<i>K</i> NN	³ He(K⁻,N)	$\Lambda p / \Lambda n$	polarimeter	P89
	<i>K</i> NNN	⁴ He(K⁻,N)	Λ d/ Λ pn	large acceptance	E80 (P92) <mark>← A first step</mark>
	<i>K</i> NNNN	⁶ Li(K⁻,d)	Λt/ <i>Λdn/Λpnn</i>	many body decay	Future
	$\overline{K}\overline{K}NN$	$ar{p}$ + 3 He	ΛΛ	$ar{p}$ beam yield	Future (Lol)

• To realize the systematic measurements, we need

□ a large acceptance spectrometer

detect/identify all particles to specify the reaction

high-intensity kaon beam

- ← improved K1.8BR
- more K⁻ yield than the existing beamline
- We take a step-by-step approach

New CDS & Improved K1.8BR

A First Step: Search for $\overline{K}NNN$

via ⁴He(1 GeV/c K⁻, n) reaction

Goals of the E80 experiment:

- ① Observe the K⁻ppn state via 2-body Ad decay
 ➢ Establish the existence of the kaonic nuclei
- Reconstruct the K⁻ppn state via 3-body Λpn decay
 As a feasibility study to access heavier system
- Feasibility study of polarization measurement
 > e.g., by installing a prototype module of a polarimeter

Expected Yield of $\overline{K}NNN$

$$V = \sigma \times N_{beam} \times N_{target} \times \epsilon,$$

 $\epsilon = \epsilon_{DAQ} \times \epsilon_{trigger} \times \epsilon_{beam} \times \epsilon_{fiducial} \times \Omega_{CDS} \times \epsilon_{CDS},$

- N_{beam} = **100 G** K- on target
 - MR beam power of **90 kW**
 - 3 weeks data taking (90% up-time)

$$\sigma(K^-ppn) \cdot Br(\Lambda d) \sim 5 \,\mu b$$

$$\sigma(K^-ppn) \cdot Br(\Lambda pn) \sim 5 \,\mu b$$

from the T77 preliminary result and an assumption

- N(K⁻ppn→Λd) ~ 1.2 x 10⁴
- N(K⁻ppn→Λpn) ~ 1.5 x 10³
 - c.f. 1.7 x 10³ "K⁻pp" → Λp accumulated in E15-2nd (40 G K⁻)

	Λd / Λpn
σ(K⁻ppn)*Br	5 μb
N(K ⁻ on target)	100 G
N(target)	2.56 x 10 ²³
ε(DAQ)	0.92
ε(trigger)	0.98
ε(beam)	0.72
Ω(CDC)	0.23 / 0.059
ε(CDC)	0.6 / 0.3
N(K⁻ppn)	12 k / 1.5 k

Schedule

		FY2022		FY2023		FY2024		FY2025			0000~							
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4		2020
SC Solenoid	De	Design Purchase (SC Wire)			Construction				Inst	tallatio Test	n &	on ning		Run				
NC	De	sign	Purc (Sc	hase inti.)	Assembly			Test & Commissioning					egrati	missio	/sics F	Analysis & Pblication		
CDC		De	sign		Construction		Test & Commissioning				Int	Com	Phy					
K1.8BR Beam Line	Mol	E	73(CD) ->	> E72(HypTPC) Experiments Upgrade E80 Experiment			ment										
				1				1						Treese			I	

Aiming to complete detector construction in 4 years.

- Superconducting solenoid magnet
- CDC (cylindrical drift chamber)
- CNC (cylindrical neutron counter)
- K1.8BR area modification

Cost

• Most of the construction cost will be covered by "Grant-In-Aid for Specially Promoted Research by MEXT (FY2022-26)".

Superconducting solenoid magnet	~350M JPY
CDC (cylindrical drift chamber)	~50M JPY
CNC 1 st -layer (cylindrical neutron counter)	~20M JPY

• The rest of the CNC will be built with budgets from other sources that we are currently trying to acquire.

CNC 2nd/3rd-layer (cylindrical neutron counter) ~50M JPY

Collaboration

K1.8BR Beam Line

Overview

We have proposed a new configuration of the beam line

> K- yield is expected to increase by ~ 1.4 times @ 1.0 GeV/c with $\pi/K \sim 2$

Beam Line Optics without D5

br11220613ifm.dat by Noumi-san

Beam Line Optics without D5

profile@FF(the Center of the DORAMI Solenoid) Turtle (3rd order)

br11220613ifr2mkb2.dat by Noumi-san

Shielding Calculation using MARS

Shielding Calculation using MARS

The results include safety factor of 4

 \rightarrow Radiation level is below the limit of 25 μ Sv/h outside of the area

Apparatus: Beam-Line Spectrometer

Overview

• Beam intensity @ 90kW

- ~1M [2.0s/4.2s]
- π/K ~ 1.5

• Beam trigger by BHT, TO, and DEF

- TOF(BHT-T0) : 4.0m [δt(π-K) ~ 2.5ns]
- $\delta_{\text{TOF(BHT-TO)}}$: σ ~ 160ps (expected)

• Kaon ID by Cherenkov counter (AC)

- index : 1.05
- π efficiency : >99%
- miss-PID K $\rightarrow \pi$: ~1%

Momentum measurement by D4

- 2 beam trackers : BHT and BDC
- $\delta p/p$: σ ~ 0.2% (expected)

Trigger Counters

BHT (Beam Hodoscope Tracker)

- Upstream (D3) plastic scintillator hodoscope
- Effective size 300 x 150 mm, 32 segments
- will be installed in FY2022 for E73 scheduled in FY2023

TO (Time Zero Counter)

- Define time zero, downstream of Q8
- Effective size 160 x 160 mm, 5 segments
- Already existing

DEF (Beam Definition Counter)

- Select beams that hits the target, upstream of target
- Effective size 100 x 100 mm, 5 segments
- Already existing

Kaon Identification Counter

- Aerogel Cherenkov counter with n=1.05
- downstream of T0
- size: 180 x 100 x 100 mm
- Average # of photons for pions: ~15
 - pion efficiency >99%
 - misidentification ratio of K as π ~1%
- Already existing

Beam Line Chambers

3.0 mm

0

3.0 mm

BDC (Beam Line Chamber)

- upstream of T0
- 160 x 160 mm effective area
- 8 layers (UU'VV'UU'VV') x2
- 32 sense wires, 2.5 mm drift length
- Typical resolution: ~150 μm
- Already existing

- wire, $\Phi=12 \mu m$, W w/ 3% Re (Au plated)
- Potential wire, $\phi=75 \mu m$, Cu-Be (Au plated)

VDC (Beam Vertex Chamber)

- upstream of DEF
- 8 layers (XX'YY'XX'YY')
- 32 sense wires, 3.0 mm drift length
- Typical resolution: ~150 μm
- Already existing

Apparatus: Cryogenic Target System

Overview

- Cool down below 3K with pulse tube (Cryomech PT410), no cryogen required
- Capable to liquefy $H_2/D_2/^3$ He/⁴He gasses [Target replacement takes a few days]
- The system has already worked well (T77/E73)
- The horizontal part will be extended for E80 in FY2023-24

500 mm

Target Cell

E73/E80 ³He/⁴He/H₂ Target Cell

ID=68, L=150 Cylinder; Kapton 0.05 X 3

Max. working pressure:

- Hydrogen 0.15MPa
- He 0.1MPa

150% pressure test - OK

 differential pressure 0.22MPa @RT, LN2, 30min

Destructive test:

- Fractured at a differential pressure of 0.62 Mpa
 - \rightarrow safety factor >4

End Cap ϕ 68 Mylar; t= 0.25

End Cap ϕ 52 Mylar; t= 0.25

V_in, V_out, V14, V17, V31, (V9, V16) open in normal operation V_in, V14 close in closed operation Others should be always closed

TMP controller

Keithley2700 ____ Data logger 000000000

Overload Shoud NOT be on

1mA current source

Scroll pump With isolate valve

Operation

Operation procedure

- 1. Start logging
- 2. Vacuuming

urrent time

2020/06/09 11:55:37

nit time 2020/06/08 17-32-1

Last sample OK 2020/06/09 11:55:25 a. Scroll pump < 1e2 Pa

Trend: <u>http://k18br-nuc2.intra.j-parc.jp/</u> Sheet: <u>http://k18br-nuc2.intra.j-parc.jp/fig/sheet.png</u> On ag: <u>http://ag.riken.jp/lhe3/T77/</u>

from

Pulse Tube target manual

Ver. 20200609 For T77 (helium-4)

In case of troubles

- Power failure
 - Compressor, Chiller stop, liquid will slowly evaporate and go back to the tank.
 Make sure the target cell and the gas tank is connected.
 - Vacuum pump stops, but isolate valve will keep vacuum. Close the gate valve if possible.

Logging & Monitering

python logger.py in /home/oper/pthe

HLEY INSTRUMENTS INC.,MODEL 2700,1138823,B ^CTraceback (most recent call last): le "logger.py", line 39, in <module>

Start Logging

- When the power recovers, restart logging first, vacuuming next, and then restart cooling.
- Vacuum problem
 - \circ $\:$ If the isolation vacuum level get worse, stop the compressor.
 - If vacuum became >1e0, stop TMP, if >1e3, close the gate valve
- Cell/Chamber damaged
 - Stop cooling and close the gate valve
- Experts: try to contact with them in any troubles
 - o Tadashi Hashimoto 080-5221-6429
 - Shigeru Ishimoto
 - Shoji Suzuki

🜞 🏟 🕵 🛋 Tue Jun 9, 11:55:38

31

en the chamber

Operation procedure has been already established

Explosion-proof

- System is designed to be explosion-proof to liquify H_2/D_2 gasses
 - ✓ Covered by "hydrogen safety tent"
 - ✓ Safety measures prepared for the E31/E57 experiment will be used as is:
 - H_2/D_2 gas detector
 - H₂/D₂ exhaust system
 - Interlock system for detectors (critical radius of 1.42m)
- Will follow "the guideline for the usage of liquid hydrogen target at J-PARC"

32

Apparatus: Cylindrical Detector System

Overview

- Large acceptance solenoid spectrometer
 - Superconducting solenoid magnet
 CDC (Cylindrical Drift Chamber)
 CNC (Cylindrical Neutron Counter)
 VFT (Vertex Fiber Tracker)
- Significantly improved performance compared to the existing CDS
 - ✓ Solid angle: x1.6 (59% → 93%) \approx 3% × 1.6 (59% → 93%) \approx 3% × 15% × 1.6)
- Resolution will retain the existing CDS performance
 - $\checkmark 5.3\% p_T \oplus 0.5\%/\beta$
 - ✓σ[TOF(T0-CNC)] ~ 160ps

Acceptance for K⁻⁴He reaction

CDS: Superconducting Solenoid Magnet

Overview

- Same design as "the detector solenoid magnet" for COMET-I
- 3.3m x 3.3m x 4.1m, ~125t in total
- Max. field of 1.0T @ center
 - 189A 10V
- NbTi/Cu SC wire, 98km in total
- Conduction-cooling with GMx3
- Semi-active quench-back system
- Will be completed in FY2024

constructed in cooperation with the J-PARC Cryogenics Section

LF+2000

000 H

断面 A

Superconducting Coil

- 14 solenoid coils
- Copper wire is formed on each coils for the quench protection heater

•	SC	wire	will	be	purchased	in	FY2022
---	----	------	------	----	-----------	----	--------

	11		
	Inner diameter	mm	2140
	Coil length	$\rm mm$	171.7
	Coil thickness	$\mathbf{m}\mathbf{m}$	8
C-:1	Number of coils	pieces	14
Coll	Total coil length	m	2.92
	Current desity	A/mm^2	131
	Number of turns per coil	turn	945
	Total number of turns	turn	13230
	Conductor dimension	mm	1.2
Superconducting wine	Copper ratio	Cu/NbTi	4.2
Superconducting wire	Length per coil	$\rm km$	7
	Total length	$\rm km$	98

Quench Protection

- Semi-active quench-back system similar to the MuSIC @ RCNP
 - \checkmark coils are connected in series

✓ copper quench-back heaters are connected in parallel to the coils via diodes

- If the quench is detected,
 - 1 the power supply is immediately shutdown
 - 2 the current in the coils is bypassed into the heater path
 - (3) almost all the energy stored in the magnet
 (4.2MJ) is dumped in the cold mass

Quench Protection

- Current decay time ~ 10s
- Max. heater voltage at both ends ~ 450V
- Max. quench spot temperature ~ 150K

 safely and reversibly protected

Fast Control From lio-san's slides

٢A	<u>ک</u>	IO	U	

合計(税込) ¥1,837,660-消費税 税抜 (¥167,060)(¥1,670,600

品 名/型 名	数	量	単 価
オムニエース		1	882,000
RA3100 AVRA3100			
校正証明書/検査成績書(本体用)		1	7,000
AZ-KENSA-RA			
4ch電圧モジュール		4	135,000
RA30-101 AVRA30-102			
校正証明書/検査成績書(モジュール用)		4	7,000
AZ-KENSA-RA			
AV トレーサビリティ 体系図(本体、モジュール共通)		1	12,000
AZ-TRB-AV			

16

V-tap位置

Main	Heater	Coil
M01	H01	C01
M01	H02	C02
M03	H03	C03
M04	H04	C04
M05	H05	C05
M06	H06	C06
	H07	C07
	H08	C08
	H09	C09
	H10	C10
	H11	C11
	H12	C12
	H13	C13
	H14	C14
6	14	14
	Total:	34

12.600

- PS/DAQ will be purchased in FY2022
 - ≻200A 10V
 ≻AC200V
 ≻air cooling

Vacuum Vessel and Return Yoke

Vacuum Vessel

- Bore dia. = ϕ 1.8m, length = 3.3m
- Outer dia. = ϕ 2.7m
- Weight = 5.9t
- Will be constructed in FY2023-24

Return Yoke

- Square shaped
- 3.3m x 3.3m x 4.1m
- ~115t
- Will be constructed in FY2022

Magnetic Field Calculation 150

3000

Magnetic Field around GM-port

Structural Calculation (EM force)

(5) (6) (8) (7) 	(16) $(15)(2)(4)(20)(9)$	(14)), (13) (13)	12) (1) //////////////////////////////////	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
	component name	Fx [N]	Fy [N]	Fz [N]	(1
((1) cap down bottom	2	25,452	-759,143	(1
J	(2) donut down bottom	107	19	206,973	(1
force that pulls the	(3) cap down up	29	-25,644	-776,760	(1
end-cans inward is	(4) donut down up	107	19	206,973	(1
	(5) cap up bottom	22	25,536	757,753	(2
about 100t	(6) donut up bottom	131	-356	-206,821	
)	(7) cap up up	116	-25,293	777,720	СС
	(8) donut up up	131	-356	-206,821	al

component name	Fx [N]	Fy [N]	Fz [N]
(9) bottom down	-36	22,811	-153,692
(10) bottom middle	160	622	-250
(11) bottom up	-28	22,564	153,750
(12) top down	6	-13,595	-110,830
(13) top middle	17	-876	-17
(14) top up	4	-13,672	110,961

45

component name	Fx [N]	Fy [N]	Fz [N]
(15) left down	-7,508	-9,926	-64,584
(16) left middle	-525	39	-166
(17) left up	-7,512	-9,660	63,407
(18) right down	7,603	692	-79,596
(19) right middle	619	22	13
(20) right up	7,602	730	79,782
component name	Fx [N]	Fy [N]	Fz [N]
all coils (Lorentz force)	-390	226	-103

Structural Calculation (Stress & Displacement)

Max. stress on a bolt is about 300Mpa → covered by using such as SCM435 M36 bolts

Max. displacement is about 1 mm near the center

Test, Magnetic Field Measurement, etc.

- <u>Cooling and extension test</u> will be performed without the return yoke at a manufactory
- We will negotiate with a company that <u>quench test (=</u> <u>power cutoff test</u>) can be performed at manufactory
- <u>Magnetic field measurement</u> will be performed by passing a 3D Hall probe from the outside through small holes provided in the end-caps
 - magnetic field scan with respect to the beam-axis direction at several positions in the (x,y) plane
 - compared with the calculated values

CDS: Cylindrical Drift Chamber

Design

- The same design of the present end-cap will be adopted
 - To reuse the existing Signal/HV-distributor boards
 - New CDC is 3 times the length of the existing CDC as it is

New CDC = 3 * existing CDC

Will be completed in FY2023

Structure

- 7 super layers (AUVAUVA) and 15 layers
- 1,816 ch with hexagonal cells
- 8,064 wires are supported by feedthroughs

Resolution will retain the existing CDC performance $\checkmark 5.3\% p_T \oplus 0.5\%/\beta$

Super-	lovor	Wire	Radius	Cell width	Cell width	Stereo angle	Signal channels
layer	layer	direction	(mm)	(degree)	(mm)	(degree)	per layer
	1	X	190.5		16.7	0	
A1	2	X'	204.0	5.00	17.8	0	72
	3	X	217.5		19.0	0	
II1	4	U	248.5	4.00	17.3	-2.27	00
01	5	U'	262.0	4.00	18.3	-2.39	90
V1	6	V	293.0	3 60	18.4	2.42	100
V I	7	V'	306.5	5.00	19.3	2.53	100
Δ 2	8	X	337.5	3.00	17.7	0	120
112	9	X'	351.0	3.00	18.4	0	120
112	10	U	382.0	2 40	16.0	-2.82	150
02	11	U'	395.5	2.40	16.6	-2.92	150
V2	12	V	426.5	9.95	16.7	2.96	160
V Z	13	V'	440.0	2.20	17.3	3.05	100
Δ3	14	X	471.0	2.00	16.4	0	180
дJ	15	X'	484.5	2.00	16.9	0	100

c.f. ~3.5 deg. @ existing CDC

Structural Analysis

• Six pipes support wire tension of ~1.6t ► Need pre-tension for 2mm deformation • Inner tube: Al-mylar-Al ≻Al: ~3mm ≻mylar: ~0.3mm Outer tube: Al ≻Al: ~2mm Wire tension Wire diameter Wire material Number of wires Wire type $50 \mathrm{g}$ $\phi 30 \ \mu m$ Au-W 1.816 sense $240~{\rm g}$ Be-Cu filed $\phi 80 \ \mu m$ 5,376 \leftarrow to keep the wire sag <200 μ m $\phi 80~\mu{\rm m}$ 1,052240 g Be-Cu guard

Gas, Readout, HV

• Basically, same as the existing CDC

 \sim Gas: Ar(50%)-C₂H₆(50%) at 1 atm

- \blacktriangleright Readout: ASDs (SONY-CXA3183Q, $\tau = 16$ ns) and HUL multi-hit TDCs
- \succ HV: almost the same settings we have been studied so far

Drift velocity vs E

 10^{2}

103

 10^{4}

Drift velocity [cm/µsec]

Gas: C_aH_c 50%, Ar 50%, T=300 K, p=1 atm

Ar_50-C2H6_50

53

@E73, 64kW(5.2s), 2021.5

Laver 1

Laver2

Laver3

Layer4

Layer5

Layer 6

Layer7

Guard

Inner

Outer

4109

4109

4109

4109

4109

4109

4109

4109

4109

4109

2848.25

2849.00

2798.25

2798.25

2798.50

2798.50

0645.25

1534.00

CDS: Cylindrical Neutron Counter

Design

- scintillator array: 3 layers, 32 segments
- ELJEN EJ-200: (T)50mm, (W)~130mm, (L)~3,000mm
- 1.5-inch FM-PMT [H8409(R7761)]

prototype@J-PARC, being in test

- Neutron detection efficiency of ~15%
- First layer will be constructed with current budget

,000mm budget

Operation in Magnetic Field

• The magnetic-field direction at the location of the FM-PMT is approximately parallel to the photomultiplier axis

← the same situation as the existing CDS, no problem

Neutron ID

- Neutron will be identified using absence of CDC tracks in front of the neutron hit
- At E15, we successfully identified neutron from Σ decay using 3cm thickness scintillator (CDH)
- $\delta t \sim 100 \text{ ps} \rightarrow \delta z \sim 2 \text{ cm}$ (CDH result)

Light velocity of CDH: ~15cm/ns

- We need δt ~100ps for the CNC
 - Being in performance test using cosmic rays

Resolution will retain the existing CDS performance $\checkmark \sigma$ [TOF(T0-CNC)] ~ 160ps

CDS: Vertex Fiber Tracker

Design

- Located on the outer wall of the target chamber (r~55 mm)
- 4 layers of ϕ 1mm scintillating fibers UU'VV'
- 896 (= 224x4) channels
- MPPC + VME EASIROC

Will be constructed in FY2022, and will be used for E73 at first

59

CDC

150

500

Improvement by the VFT

Vertex resolution of the beam direction
 ~1cm (CDC only) → ~1mm (CDC+VTF)
 will enable us to discriminate between the signals and backgrounds

with event topology such as distance of closest approach method

• Solid angle covering the target region

97% of 4π (15°-165°)

will enable us to efficiently reduce backgrounds from multi-π productions

Momentum/mass resolution
 L=~30cm (CDC only) → ~43cm (CDC+VFT)

δP_T	$P_T \sigma_{r\phi}$
$\left(\frac{1}{P_T}\right)_m =$	$= \frac{1}{0.3L^2B} \sqrt{A_N}$

Particle	cτ (cm)
Λ	7.89
$\Sigma +$	2.404
Σ —	4.434

CDS: Support Structure

How to install detectors 1

1) a structure supporting the CNC will be built stand-alone or built into the end-cap of the CDC, and the CDC and CNC will be assembled as one unit

2) the detector unit will be installed by sliding it on inner-wall rails of the vacuum vessel (corresponding to 3t)

 \rightarrow The detailed design of the support structure is being done by a design firm.

Idea of the support structure (preliminary)

Detector Service Space

We need the same area space as the CDS for the detector service space

65

Apparatus: Trigger and DAQ System

Trigger

- Simplest charged-multiplicity trigger
 - Multiplicity trigger of the first layer of the CNC (fCNC)
 - 3≥ hits of the fCNC (fCNC3) is the main trigger for E80 $K^{-4}\text{He} \rightarrow "K^{-}ppn" n \rightarrow \Lambda dn \rightarrow \pi^{-}pdn$ $K^{-4}\text{He} \rightarrow "K^{-}ppn" n \rightarrow \Lambda pnn \rightarrow \pi^{-}ppnn$

- Trigger rate is estimated based on T77 [⁴He, 51kW(5.2s)~63kW(4.2s)]
 - Simply scaled by increased beam power(63kW→90kW), K-intensity(x1.4), and solid angle(59%→93%)

T77 [51kW(5.2s), Run85]		E80 [90kW(4.2s)]		
Beam (BHD*T0*DEF)	640k	Beam (BHT*T0*DEF)	1,000k	
Pion (Beam*AC)	430k	Pion (Beam*AC)	620k	
Kaon (Beam*ACbar)	210k	Kaon (Beam*ACbar)	420k	
Pion*CDH1	10k	Pion*fCNC1	22k	
Kaon*CDH1	13k	Kaon*fCNC1	41k	
Kaon*CDH2	4k	Kaon*fCNC2	12k	
Kaon*CDH3	1.3 k	Kaon*fCNC3	4.0 k	

DAQ

- Will use the existing HDDAQ framework @ K1.8BR
- Max. accumulation rate has been confirmed to reach to ~10 k events per spill with more than 90% DAQ efficiency
 - Trigger rate of main trigger (fCNC_3) will be ~4k
 - Other triggers will be sampled and accumulated keeping the DAQ efficiency high

Detector	# of channels	Sub-type	# of nodes	memo
BDC, VDC	512+256	HUL MH-TDC	6	
CDC	1816	HUL MH-TDC	15	
BHT	128	HUL HR-TDC	2	
T0,DEF,AC 20-	20+4	HUL HR-TDC	1	
	20+0	VME QDC	1	CAEN V792
CNC 192	100	HUL HR-TDC	3	
	VME QDC	1	CAEN V792	
VFT	896	VME EASIROC	14	or CIRASAME
Scaler	128	HUL Scaler	1	
			44	

 \rightarrow well controllable

69

Summary

E80 Experiment (K^{bar}NNN search)

E80 investigates the **K**⁻**ppn** bound state, toward the systematic study of the kaonic nuclei

- Construct a large solenoid spectrometer
- Improve kaon yield by modifying the K1.8BR

E80 (L ⁴ He)			
Expected result	Establishment of K ⁻ ppn (Λd/Λpn)		
Start date	FY2025-26		
Beam intensity	90kW		
Beam time	1+1+3 weeks		

