E15/E17 Status

Ryugo S. Hayano^{*}, Tokyo

for J-PARC E15/E17 Collaboration

* E17 spokesperson

K1.8BR beam tuning results

Preparation status

How long do we (E17) need to run?

R.S. Hayano, Jan 15, 2010, J-PARC PAC

1. About E15 & E17

EI5/EI7 Collaboration

S. Ajimura¹, G. Beer², H. Bhang³, M. Bragadireanu^{7,17}, P. Buehler⁴, L. Busso^{5,6},
M. Cargnelli⁴, S. Choi³, C. Curceanu⁷, S. Enomoto⁸, D. Faso^{5,6}, H. Fujioka⁹, Y. Fujiwara¹⁰,
T. Fukuda¹¹, Y. Fukuda¹², C. Guaraldo⁷, T. Hashimoto¹⁰, R. S. Hayano¹⁰, T. Hiraiwa⁹,
M. Iio¹³, M. Iliescu⁷, K. Inoue⁸, T. Ishikawa¹⁰, S. Ishimoto¹⁴, T. Ishiwatari⁴, K. Itahashi¹³,
M. Iwai¹⁴, M. Iwasaki^{12,13}, P. Kienle^{4,15}, H. Kou¹², J. Marton⁴, Y. Matsuda¹⁶, Y. Mizoi¹¹,
O. Morra⁵, T. Nagae⁹, H. Noumi¹, H. Ohnishi¹³, S. Okada⁷, H. Outa¹³, D. Pietreanu⁷,
Y. Sada⁹, A. Sakaguchi⁸, F. Sakuma¹³, M. Sato¹⁰, M. Sekimoto¹⁴, D. Sirghi^{7,17}, F. Sirghi^{7,17},
K. Suzuki⁴, S. Suzuki¹⁴, T. Suzuki¹⁰, H. Tatsuno¹⁰, M. Tokuda¹², D. Tomono¹³,
A. Toyoda¹⁴, K. Tsukada¹³, E. Widmann⁴, T. Yamazaki^{10,13}, H. Yim³, and J. Zmeskal⁴

(1) Research Center for Nuclear Physics (RCNP), Osaka University, Osaka, 567-0047, Japan

(2) Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6, Canada

(3) Department of Physics, Seoul National University, Seoul, 151-742, South Korea

(4) Stefan-Meyer-Institut für subatomare Physik, A-1090 Vienna, Austria

(5) INFN Sezione di Torino, Torino, Italy

(6) Dipartimento di Fisica Generale, Universita' di Torino, Torino, Italy

(7) Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy

(8) Department of Physics, Osaka University, Osaka, 560-0043, Japan

(9) Department of Physics, Kyoto University, Kyoto, 606-8502, Japan

(10) Department of Physics, The University of Tokyo, Tokyo, 113-0033, Japan

(11) Laboratory of Physics, Osaka Electro-Communication University, Osaka, 572-8530, Japan

(12) Department of Physics, Tokyo Institute of Technology, Tokyo, 152-8551, Japan

(13) RIKEN Nishina Center, RIKEN, Saitama, 351-0198, Japan

(14) High Energy Accelerator Research Organization (KEK), Ibaraki, 305-0801, Japan

(15) Technische Universiät München, D-85748, Garching, Germany

(16) Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
 (17) National Institute of Physics and Nuclear Engineering - IFIN HH, Romania

E15 : Search for K⁻-pp

E15 setup

Ap invariant mass

E17 : $K^--^{3}He 3d \rightarrow 2p x-rays$

E17 setup

E15 setup vs E17 setup comparison

E15 & E17

	E15	E17		
Physics	Kaon-nucleus deeply- bound state	Kaon-nucleus strong int. potential		
Beam	1 GeV/c in-flight K ⁻	0.75 GeV/c→stopped K ⁻		
Beamtime (as proposed, excluding beam tuning & commissioning)	5.5 weeks at 270 kW 1500 kW*week	5 weeks at 27 kW 135 kW*week		
Target	Liquid Helium 3			
Beamline	K1.8BR			
Assumed schedule	E17 runs first (10% beam intensity), then E15			

2. K1.8BR tuning

K1.8BR beamline

>Top >Topics >this page

Confirmation of kaons in the K1.8BR beam at the Hadron Facility, J-PARC.

J-PARC Center

First K⁺, JFY2008

K⁺/π⁺ ~ 1/500

Joint experimental team, E17 lead by Professor Ryugo Hayano, University of Tokyo and E15, lead by Dr. Masahiko Iwasaki, Riken, has successfully confirmed kaon generation in the secondary beams at the K1.8BR, Hadron Facility, J-PARC. This result was reported by Dr. Takatoshi Suzuki, University of Tokyo, at "Workshop Celebrating the First Beam at Hadron Hall" held on March 25-26 at Tokai.

K1.8BR beam study of year 2009

dates	time	Beam intensity	Production target	Momentum/polarity/ condition	study
2009/10/22~23	18:00~22:00 1:00~4:00	0.05 Tp pp (40 W)	Ni	±1.1 GeV/c Unseparated->±100 kV - >unseparated	K [±] confirmation Trigger study
2009/11/15	01:15~09:30	0.07 Tp pp (56 W)	Ni	+0.75 GeV/c unseparated	NIM Scaler tune Trigger study D magnet tune
2009/11/16	05:00~07:00	0.07 Tp pp (56 W)	Ni	+0.75 GeV/c unseparated	Trigger study D magnet tune
2009/11/18	02:30~07:00				K [±] confirmation K [±] yield study (unseparated)
2009/12/12	01:00~09 U_U (goal 27	0 kW)	.24 N		K trigger tune K± CM scan
2009/12/13	13:40~14 Ni	or F)t tar	rets	K trigger tune Scaler tune
2009/12/16	07:00~08				K [±] yield study for Ni target (unseparated)
2009/12/16	16:20~16:30	0.68 Tp pp (550 W)	Pt	+ 0.75 GeV/c unseparated	Rate study
2009/12/17	04:00~07:00	0.3 Tp pp (240 W)	Pt	±0.75 GeV/c ±200 kV->unseparated	K [±] yield study for Pt target (separated/ unseparated)
2009/12/23	1:00~5:00	0.3 Tp pp (240 W)	Pt&Ni	±0.75 GeV/c ±200 kV	EQ/RQ on K± yield study, Pt/Ni comparison

13

K1.8BR beam study of year 2009

dates	time	Beam intensity	Production target	Momentum/polarity/ condition	study
2009/10/22~23	18:00~22:00 1:00~4:00	0.05 Tp pp (40 W)	Ni	±1.1 GeV/c Unseparated->±100 kV - >unseparated	K [±] confirmation Trigger study
2009/11/15	01:15~09:30	0.07 Tp pp (56 W)	Ni	+0.75 GeV/c unseparated	NIM Scaler tune Trigger study D magnet tune
2009/11/16	05:00~07:00	0.07 Tp pp (56 W)	Ni	+0.75 GeV/c unseparated	Trigger study D magnet tune
2009/11/18	02:30~07:00	0.07 Tp pp (56 W)	Ni	±0.75 GeV/c unseparated	K [±] confirmation K [±] yield study (unseparated)
2009/12/12	01:00~09:30	0.2 Tp pp (160 W)	Ni	±0.75 GeV/c unseparated ->±200 kV	K [±] CM scan
2009/12/13	13:40~14:30	0.68 Tp pp (550 W)	Pt	+ 0.75 GeV/c unseparated	K trigger tune Scaler tune
2009/12/16	07:00~09:40	0.3 Tp pp (240 W)	Ni	±0.75 GeV/c unseparated	K [±] yield study for Ni target (unseparated)
2009/12/16	16:20~16:30	0.68 Tp pp (550 W)	Pt	+ 0.75 GeV/c unseparated	Rate study
2009/12/17	04:00~07:00	0.3 Tp pp (240 W)	Pt	±0.75 GeV/c ±200 kV->unseparated	K [±] yield study for Pt target (separated/ unseparated)
2009/12/23	1:00~5:00	0.3 Tp pp (240 W)	Pt&Ni	±0.75 GeV/c ±200 kV	EQ/RQ on K [±] yield study, Pt/Ni comparison

14

K1.8BR K[±] CM scan (Dec 12. 2009)

Primary: 2×10¹¹ ppp momentum 0.75 GeV/c Target: Ni EQ/RQ: OFF

K1.8ES1: ±200 kV

IF-H:±130mm IF-V: -0mm/+4mm K1.8Mom Slit: ±60mm K1.8Mass Slit1: ±2.35mm

the 6-m-long separator (ES1) works beautifully!

M. leiri et al. / NIMB 266 (2008) 4205

K1.8BR beam study of year 2009

dates	time	Beam intensity	Production target	Momentum/polarity/ condition	study	
2009/10/22~23	18:00~22:00 1:00~4:00	0.05 Tp pp (40 W)	Ni	±1.1 GeV/c Unseparated->±100 kV - >unseparated	K [±] confirmation Trigger study	
2009/11/15	01:15~09:30	0.07 Tp pp (56 W)	Ni	+0.75 GeV/c unseparated	NIM Scaler tune Trigger study D magnet tune	
2009/11/16	05:00~07:00	0.07 Tp pp (56 W)	Ni	+0.75 GeV/c unseparated	Trigger study D magnet tune	
2009/11/18	02:30~07:00	0.07 Tp pp (56 W)	Ni	±0.75 GeV/c unseparated	K [±] confirmation K [±] yield study (unseparated)	
2009/12/12	01:00~09:30	0.2 Tp pp (160 W)	Ni	±0.75 GeV/c unseparated ->±200 kV	K trigger tune K [±] CM scan	
2009/12/13	13:40~14:30	0.68 Tp pp (550 W)	Pt	+ 0.75 GeV/c unseparated	K trigger tune Scaler tune	
2009/12/16	07:00~09:40	0.3 Tp pp (240 W)	Ni	±0.75 GeV/c unseparated	K [±] yield study for Ni target (unseparated)	
2009/12/16	16:20~16:30	0.68 Tp pp (550 W)	Pt	+ 0.75 GeV/c unseparated	Rate study	
2009/12/17	04:00~07:00	0.3 Tp pp (240 W)	Pt	±0.75 GeV/c ±200 kV->unseparated	K [±] yield study for Pt target (separated/ unseparated)	
2009/12/23	1:00~5:00	0.3 Tp pp (240 W)	Pt&Ni	±0.75 GeV/c ±200 kV	K± yield, Pt/ Ni	17

K[±] yield, Ni vs Pt (Dec 23, 2009)

Primary 3×10¹¹ ppp (0.24 kW), momentum :±0.75 GeV/c EQ/RQ: ON

K1.8ES1: ±200 kV CM1=CM2=350(K⁺)/355(K⁻) IF-H:±130mm (wide open) IF-V: -0mm/+4mm->-2mm/+6mm K1.8Mom Slit: ±180mm (wide open) K1.8Mass Slit1: ±2.35mm ->±4.7mm (x2 design value)

Slit wide open K trigger efficiency >97%, K trigger purity >99% We are counting ALL the kaons available at K1.8BR

K1.8BR Ni vs Pt (Dec 23, 2009)

0.75 GeV/c 0.24 kW Momentum slit fully opened Mass slit x2 wider than the design value

		Ni	Pt	Pt/Ni
K+	K+/spill	444	898	2.0
	K+/π+ ratio (x10 ⁻²)	5.3	8.4	1.6
K-	K⁻/spill	120	223	1.9
	K ⁻ /π ⁻ ratio (x10 ⁻²)	1.7	2.1	1.3

Pt target is x2 better (yield & K/π ratio) K⁺ 900/spill, K⁻ 220/spill @ 0.24 kW, Pt target K/π may improve by further tuning K yield per beam power **not** likely to improve any further

		Ni	Pt	Pt/Ni
K+	K+/spill	444	898	2.0
	K+/π+ ratio (x10 ⁻²)	5.3	8.4	1.6
K-	K⁻/spill	120	223	1.9
	K ⁻ /π ⁻ ratio (x10 ⁻²)	1.7	2.1	1.3

3. E17 preparation

Silicon Drift Detector (SDD)

Study @ test bench

- Operation check of all SDD/preamplifiers
- Basic study (T dependence, timing resolution etc.)

Silicon Drift Detector (SDD)

All the 8 SDDs/preamplifiers work fine Further optimization of the operating condition is in progress

SDDs in the ³He cryostat

SDDs in the ³He cryostat

Succeed in operating SDDs in the LHe3 cryostat (preamplifiers work in vacuum) Achieved good resolution of ~ 150 eV (@ 6 keV)

cf. ~180 eV @ E570

4. E15 preparation

Cylindrical Detector System (CDS)

Cylindrical Detector System (CDS)

CDC & CDH have been successfully installed inside the Solenoid Magnet

CDC readout chain

CDC with all preamp cards and cables

LVDS→ECL converters at the exp. hall

TDC's in the counting room

cables

LVDS

8m

CDC Study with Cosmic Rays

Intrinsic spatial resolution ~200µm

CDC has achieved the design performance

5. E17 Beamtime requirement

We need 30 weeks (1kW, Ni target)

Proposal: 135 kW-weeks \rightarrow estimate the current requirement

	In proposal	Now	Now/ Proposed
Vertex detector solid angle (for fiducial cut)	"VDC"s used for E570, Ω =30%	CDC, Ω=60%	x 2
SDD solid angle	x3 larger than E570	x7.7 larger than E570	x 2.6
K- yield		~87% of the proposal	x 0.87
Total		<u>.</u>	x4.5

Now : 135/4.5 = 30 kW-week is needed to finish E17

6. Summary

SUMMARY

K1.8BR tuning nearly completed

- Yield: 500 K⁻/spill/kW @ 0.75 GeV/c with Ni target
- ES1 works very well; we can take data with ~100 kW beam even with the present spill time structure
- Further studies planned in run#29 & 30 (comparison of measured and calculated optics)

► E17 is ready to run in Fall 2010

 needs 3 days for stopped-K⁻ optimization, and 7 days of detector commissioning (as in the proposal)

Completion of E17 will take 30 weeks

- Assumption: 1 kW DC beam, Ni target

Pt target is preferred over Ni (x2 gain)

K1.8BR/K1.1 comparison, from E17 proposal

E570: ~400 stopped K⁻ / spill

yield per spill

(flat top 0.7s, repetition 3.53s assumed)

K1.1BR?

► K1.8BR is ~30m long, K1.1BR is ~20m

- At 0.75 GeV/c, K- intensity @ K1.1BR is expected to be higher than at K1.8BR by about x10
- But K/ π ratio would be worse due to the short separator length

•E17's running time can be shorter at K1.1BR

- In this case, E15 will stay at K1.8BR with the CDC.
- E17 tracking will be done with the old planer chambers
- lose the vertex-cut solid angle by 50%, but rate is still higher by about x5
- K1.1BR and SKS can run simultaneously. This increases the "throughput" of the hadron hall