Investigation of Fundamental Properties of the $\bar{K}NN$ state

To get the stage-1 status

The 39th J-PARC PAC Meeting Takumi Yamaga (KEK-IPNS)

P89

Comments from the 32nd PAC

E80 is at stage-1 status but is not yet stage-2 approved. We await the TDR to be submitted for E80 in due course. Then we would like to see the detailed feasibility of P89.

> E80 has been stage-2 approved. It is time to discuss the feasibility of P89!

(E80 : Experiment for $\overline{K}NNN$)

Introduction

The lightest kaonic nucleus, – K^{KN} 20 $\overline{K}NN$ bound state 2.4 **Bound system of** anti-kaon and two nucleons $\left[\bar{K}_{I=\frac{1}{2}}(NN)_{I=1}\right]_{I=\frac{1}{2}} (J^{P} = 0^{-})$ $\mathcal{I}^{(z)}_{\bar{K}NN}$ *"Kpp*" $(K^-pp - \bar{K}^0pn)$ $\bar{K}^0 nn''$ $(\bar{K}^0 nn - K^- pn)$

 $KNN \rightarrow \Lambda p$ $-KNN \rightarrow \Sigma^0 p$

Internal structure & spin-parity

There are two possible J^P as for the $\bar{K}NN$ ground state.

What we need to do about $\bar{K}NN$

should be observed

to confirm the state is isospin doublet.

should be determined

to understand the internal structure of the state.

*``K*⁰*nn''* should be observed to confirm the state is isospin doublet.

Estimation of Production C.S. of \overline{K}^0nn

$$\sigma_{I_{\bar{K}NN}}^{J^{P}} = R_{\bar{K}NN} \times$$
Formation probability
$$-Common -$$
Elementary CSs @ $\theta_{N} = 0^{\circ}$

$$\sigma_{K^{-n}} = 4.7 \text{ (mb/sr)}$$

$$\sigma_{\bar{K}^{0}n} = 2.4 \text{ (mb/sr)}$$

$$I_{\bar{K}NN}^{(2)} = -1/2 \quad \sigma_{K^{-p}} = 1.8 \text{ (mb/sr)}$$

Estimation of Production C.S. of \bar{K}^0nn

Production C.S. of $\bar{K}^0 nn$ is expected to be large enough.

How to measure the spin-spin correlation

by *p*-C scat. asym.

Spin-spin correlation on ϕ -asymmetry $N(\phi_{\Lambda p}) = N_0 \cdot (1 + r^{(J^P)} \cdot \alpha_{\Lambda p} \cos \phi_{\Lambda p})$ $r^{(J^P)}$: asymmetry reduction factor defined by; $\alpha_- : \Lambda$ asym. parameter B: Magnetic field A_{pC} : Analyzing power $B_{\bar{K}}$: Binding energy $f_{\bar{S}_{\Lambda}}$: Spin distribution q: Momentum transfer

We can deduce $\alpha_{\Lambda p}$ from $\phi_{\Lambda p}$ -distribution.

Experiment

K1.8BR Beamline

Expected K^- -beam intensity (1 GeV/c)

 $\sim 250~k$ /spill on target (@ 90kW)

Kaon purity $K/\pi \sim 1/2$

Luminosity per week

As a result of increasing beam intensity & ³He amount

$\sim 6 \text{ nb}^{-1}/\text{week}$

c.f.) Integrated luminosity in E15 2.89 nb⁻¹

Expected trigger rate

~ 10000 /spill

Rate capability of existing DAQ >90% efficiency up to ~ 10000/spill

Cylindrical Detector System for E80

Cylindrical Detector System for E80

Cylindrical drift chambe

Expected spectra of $\bar{K}NN$

 \bar{K}^0 nn can be seen by the same manner as K^-pp

Expected spectra of $\bar{K}^0 nn$

Expected spectra of $\bar{K}^0 nn$

Polarimeter for spin-spin corr. Measurement

Cylindrical drift chambe

Tracker for polarimeter

The optimal configuration is under consideration.

Neutron counters as scattering target

³He target

The amount increases **1.5 times**

from E15 exp.

Conceptual Design of the Polarimeter

Cylindrical Drift Chamber

~15 cm

Necessary Position Resolution for the Tracker

Expected spectra for $\alpha_{\Lambda n}$ **measurment**

We would exclude $J^P = 1^-$ with 95% confidence level.

Beamtime request

1st RUN – **2** weeks with the E80 setup just aft $\frac{3}{2}$ r E80 in JFY2026-27 •Searching for " $\overline{K}^0 nn$ " $\rightarrow \check{\Lambda} n/\Sigma^- p$ signals •x30 statistics data than E15 for " K^-pp " $\rightarrow \Lambda p$ 2.2

Preparing the polarimeter (tracking) system –

2nd RUN •Measuring for $\alpha_{\Lambda p}$ to determine J^P

 $\phi_{\Lambda p}$

Collaborators

+ Many theoretical supports

We investigate $\bar{K}NN$ both experimentally & theoretically.

We wish to get the stage-1 status to promote the project & to obtain the budget for the polarimeter.

Summary

Thank you for your attention!