Status report on E80/P92

Systematic Investigation of the Light Kaonic Nuclei

-from the $\overline{K}N$ to $\overline{K}NNNN$ systems -

the J-PARC E80/P92 collaboration

37th J-PARC PAC meeting, Jan 24-26, 2024

Physics Goal

Reveal the meson properties inside nuclei via the KN interaction

Strategy

3

- for systematic study from the $\overline{K}N$ to $\overline{K}NNNN$ systems -

		Reaction	Decays	Key	Experiment			
•••	 <i>K</i> N	d(K⁻,n)	$\pi^{\pm 0}\Sigma^{\mp 0}$	n/ γ identification	Future			
000	$\overline{K}NN$	³ He(K⁻,N)	Λ p/ Λ n	polarimeter	P89			
	<i>K</i> NNN	⁴ He(K⁻,N)	Λ d/ Λ pn	large acceptance	E80 (P92) <mark>← A first step</mark>			
	<i>K</i> NNNN	⁶ Li(K⁻,d)	Λ t/ Λ dn/ Λ pnn	many body decay	Future			
	<i>KK</i><i>N</i><i>N</i>	$ar{p}$ + 3 He	ΛΛ	$ar{p}$ beam yield	Future (Lol)			
• To realize the systematic measurements, we need								
□ a large acceptance spectrometer ← new CDS								
 detect/identify all particles to specify the reaction 								
🗖 high-intensity kaon beam 🧲 improved K1.8BR								
• more K ⁻ yield than the existing beamline								
We take a step-by-step approach								

KNNN **@ E80** via ⁴He(1 GeV/c K⁻, n) reaction

- ① Establish the existence of $\overline{K}NNN$ ≻ "K-ppn" → Ad 2-body decay
- ② Study the multi-particle decay mode of KNNN toward understanding its internal structure
 > "K-ppn" → Apn 3-body decay
- Feasibility study of spin-spin correlation measurement for P89
 - > *e.g.*, installing a prototype module of a polarimeter

Beam intensity	90kW
Beam time	1+1+3 weeks

New CDS

Superconducting Solenoid Magnet

 Same design as "the detector solenoid magnet" for COMET-I

being constructed in cooperation with the J-PARC Cryogenics Section

- 3.3m x 3.3m x 4.1m, ~125t in total
- Max. field of 1.0T @ center
 - 189A 10V
- NbTi/Cu SC wire, 98km in total
- Conduction-cooling with GM*3
- Semi-active quench-back system
- Will be completed in FY2024

Cylindrical Drift Chamber

- The same design of the present end-cap
 - Reuse the existing Signal/HV-distributor boards and readout systems
 - New CDC is 3 times the length of the existing CDC

Neutron Counter

- scintillator array: 3 layers, 32 segments
- ELJEN EJ-200: (T)50mm, (W)~130mm, (L)~3,000mm
- 1.5-inch FM-PMT [H8409(R7761)]
- Neutron detection efficiency of ~15%
- Design will be finalized soon

• Will be fabricated in FY2024 (# of first productions will depend on budget) time resolution - position CNC

K1.8BR Upgrade

- We have proposed a new configuration of the beam line
 - K- yield is expected to increase by ~ 1.4 times
 @ 1.0 GeV/c with π/K ~ 2

Will contribute to electricity savings

Shorten the beamline (~2.5m) by removing the final D5 magnet

Relative beam-line length (m)	D5	D4
Present CDS	0	-3.7
New CDS	+1.2	<mark>-2.5</mark>

Shielding Calculation using MARS

✓ 1.0 GeV/c pion

 \checkmark intensity: 1.8x10¹⁰/h \rightarrow $30M/6s \rightarrow 5 M/sec.$

The results include safety factor of 4

 \rightarrow Radiation level is below the limit of 25 μ Sv/h outside of the area

possible to reconfigure shields with existing ones

6m3

1/2 7,2

8m3

11

テストライン未続計

Schedule

12

Summary

E80 investigates the **"K⁻ppn"** bound state, toward the systematic study of the kaonic nuclei

- Constructing a large solenoid spectrometer
- Modify the K1.8BR to improve kaon yield

- We request the PAC to endorse "the K1.8BR beamline upgrade"
 - because modifying the BL requires a time-consuming radiation application
- We will submit the revised TDR in May 2024 for requesting stage-2 approval of E80

Hope to modify around FY2025

J-PARC E80 Collaboration

T. Akaishi^a, H. Asano^b, M. Bazzi^c, P. Buehler^d, A. Clozza^c, C. Curceanu^c, H. Fujioka^e,

C. Guaraldo^c, T. Hashimoto^a, E. Hodota^f, M. Iio^g, M. Iliescu^c, K. Inoue^h, S. Ishimoto^g,

K. Itahashi^b, M. Iwasaki^b T. Kang^f, S. Kawasaki^h, Y. Kimura^f, Y. Ma^b, M. Miliucci^c,

(e) Department of Physics, Tokyo Institute of Technology, Tokyo, 152-8551, Japan

(f) Research Center for Electron Photon Science (ELPH), Tohoku University, Sendai, 982-0826,

Tokyo Tech

Thank you for your attention!

A first step of the project

