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This proposal aims to expand the physics 
successfully developed by the J-PARC E15

experiment
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What We Did
- Experimental Search for the �𝑲𝑲𝑵𝑵𝑵𝑵 -

• We measured the 3He(K-,Λp)n reaction
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K1.8BR beamline



What We Observed
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PLB789(2019)620.
arXiv:2006.13433 submitted to RPC

“K-pp” state



What We Have Learned

• “K-pp” bound state exists
𝑞𝑞-independent

• QF followed by 2NA
shows Λpn FS can be 
generated from 2-step 
processes via (K-,n)
𝑞𝑞-dependent

acceptance & 
efficiency
corrected

𝒒𝒒 :  momentum transfer of (K-,n)
𝑴𝑴 : invariant mass of Λp

T.Yamaga et. al., arXiv:2006.13433

Un-boundBound

2D analysis in (M,q) is essential
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 quite important to understand 
the production mechanism of the 
“K-pp” bound state

𝑑𝑑2𝜎𝜎/(𝑑𝑑𝑑𝑑 � 𝑑𝑑𝑑𝑑)
[𝑛𝑛𝑛𝑛/(𝑀𝑀𝑀𝑀𝑀𝑀2/𝑐𝑐3)]



What We Have Learned

BKpp ~ 40 MeV, ΓKpp ~ 100 MeV
 large binding energy  wide momentum transfer

𝜎𝜎(𝑀𝑀, 𝑞𝑞) ∝ 𝜌𝜌(𝑀𝑀, 𝑞𝑞) ×
(Γ𝐾𝐾𝐾𝐾𝐾𝐾/2)2

(𝑀𝑀 −𝑀𝑀𝐾𝐾𝐾𝐾𝐾𝐾)2+(Γ𝐾𝐾𝐾𝐾𝐾𝐾/2)2 × 𝑒𝑒𝑒𝑒𝑒𝑒 −
𝑞𝑞2

𝑄𝑄𝐾𝐾𝐾𝐾𝐾𝐾2

Qkpp ~ 400 MeV (c.f. QQF ~ 200 MeV)

Fit with PWIA
arXiv:2006.13433
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The results suggest the “K-pp” is quite compact



Size of “K-pp”

BKpp ~ 40 MeV
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 large binding energy  wide momentum transfer
Qkpp ~ 400 MeV

suggest the “K-pp” is quite compact (RKpp ~ 0.6 fm)
 Need more realistic theoretical calculations

𝜎𝜎(𝑀𝑀, 𝑞𝑞) ∝ 𝜌𝜌(𝑀𝑀, 𝑞𝑞) ×
(Γ𝐾𝐾𝐾𝐾𝐾𝐾/2)2

(𝑀𝑀 −𝑀𝑀𝐾𝐾𝐾𝐾𝐾𝐾)2+(Γ𝐾𝐾𝐾𝐾𝐾𝐾/2)2 × 𝑒𝑒𝑒𝑒𝑒𝑒 −
𝑞𝑞2

𝑄𝑄𝐾𝐾𝐾𝐾𝐾𝐾2
Fit with PWIA

�𝐾𝐾 �𝐾𝐾

~ 0.6 fm~ 0.6 fm

Radius of “K-pp” Interaction range of “K-” 
Still an open question (�𝑲𝑲𝑵𝑵 = strong force)

~ 
0.

8 
fm

In addition,
effect of K size?

?



• A theoretical calculation in chiral unitary approach  
reproduces the mass spectrum with the �𝐾𝐾𝑁𝑁𝑁𝑁
 Theoretical investigations for experimental 

results are indispensable

What We Have Learned with Theorists
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PLB789(2019)620. PTEP2016(2016)123D03.
JPS Conf. Proc.26(2019)023009.

A) Watson approach
B) Faddeev approach

(BG subtracted)



• Further details of the �𝑲𝑲𝑵𝑵𝑵𝑵
− Spin and parity of the “K-pp”?
− Strength of �𝐾𝐾𝑁𝑁 interaction?
− Really compact and dense system?

• Λ(1405) state
− �𝐾𝐾𝑁𝑁 molecular state as considered?
− Size?
− Relation between �𝐾𝐾𝑁𝑁 and �𝐾𝐾𝑁𝑁𝑁𝑁?

• More heavier kaonic nuclei?
− Mass number dependence?

• Double kaonic nuclei?
− Much compact and dense system?

Many Questions to be Answered
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K-K-pp



• Further details of the �𝑲𝑲𝑵𝑵𝑵𝑵
− Spin and parity of the “K-pp”?
− Strength of �𝐾𝐾𝑁𝑁 interaction?
− Really compact and dense system?

• Λ(1405) state
− �𝐾𝐾𝑁𝑁 molecular state as considered?
− Size?
− Relation between �𝐾𝐾𝑁𝑁 and �𝐾𝐾𝑁𝑁𝑁𝑁?

• More heavier kaonic nuclei?
− Mass number dependence?

• Double kaonic nuclei?
− Much compact and dense system?

Experimental Task for the New Project
10

K-K-pp



Strategy of the New Project

• To realize the systematic measurements, we utilize
 a large acceptance spectrometer

• detect/identify all particles to specify the reaction
 high-intensity kaon beam

• more K− yield than the existing beamline
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We take a step-by-step approach

Reaction Decays Key
�𝑲𝑲𝑵𝑵 d(K-,n) π±0Σ∓0 n/γ identification
�𝑲𝑲𝑵𝑵𝑵𝑵 3He(K-,N) Λp/Λn polarimeter
�𝑲𝑲𝑵𝑵𝑵𝑵𝑵𝑵 4He(K-,N) Λd/Λpn large acceptance 
�𝐾𝐾𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 6Li(K-,d) Λdn/Λpnn many body decay
�𝐾𝐾�𝐾𝐾𝑁𝑁𝑁𝑁 𝑝̅𝑝 + 3He ΛΛ 𝑝̅𝑝 beam yield

 A first step
 Feasibility study

 Feasibility study

- for systematic study from the �𝑲𝑲𝑵𝑵 to �𝑲𝑲𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 systems -



A First Step: Search for �𝑲𝑲𝑵𝑵𝑵𝑵𝑵𝑵
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① Observe the K-ppn state via 2-body Λd decay 
 Establish the existence of the kaonic nuclei

② Reconstruct the K-ppn state via 3-body Λpn decay
 As a feasibility study to access heavier system

 Feasibility study of the polarization measurement
 e.g., by installing a prototype module of the polarimeter

Goals of the proposed experiment:



A New Cylindrical Detector System

A new 4π spectrometer with n/γ detection capability
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A New Cylindrical Detector System

Solid angle: ~x1.5 (~90%)

Neutron detection capability: ~x10 
( ~1.5x15%)
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• SC Solenoid Magnet
• Cylindrical Drift Chamber
• Neutron Counter
• FWD/BWD Drift Chambers
• Vertex Fiber Tracker
• Electromagnetic Calorimeter 

(constructed in 2nd-stage)



Improvement of Kaon Intensity

• We propose a new configuration of the beamline
• K- yield is expected to increase by ~ 1.4 times @ 1.0 GeV/c

Shorten the beamline (~3.7m) 
by removing the final D magnet

Can be upgraded 
with a forward 
spectrometer

K1.8BR beamline

15



Expected Yield of �𝑲𝑲𝑵𝑵𝑵𝑵𝑵𝑵
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• We assume the K-ppn cross section 
of
𝝈𝝈 𝑲𝑲−𝒑𝒑𝒑𝒑𝒑𝒑 � 𝑩𝑩𝑩𝑩 𝜦𝜦𝒅𝒅 ~ 𝟏𝟏𝟏𝟏 𝝁𝝁𝒃𝒃
𝝈𝝈 𝑲𝑲−𝒑𝒑𝒑𝒑𝒑𝒑 � 𝑩𝑩𝑩𝑩 𝜦𝜦𝒑𝒑𝒑𝒑 ~ 𝟏𝟏𝟏𝟏 𝝁𝝁𝒃𝒃

 The same CS of “K-pp”Λp in E15
 As for Λd decay, we refer to the 

absorption of stopped K− on 4He
 decay fraction to Σ−pd : Σ−ppn ~ 1 : 1

PRD1(1970)1267

absorption of stopped K− on 4He



Expected Yield of �𝑲𝑲𝑵𝑵𝑵𝑵𝑵𝑵

• Nbeam = 100 G K- on target
• under the MR beam power of 90 kW 

with 5.2 s repetition cycle.
• 3.2 x 105 K- on target / spill @ 1.0 GeV/c

• 3 weeks data taking (90% up-time)

• N(K-ppnΛd)   ~ 1.9 x 104

• N(K-ppnΛpn) ~ 2.8 x 103

• c.f. 1.7 x 103 “K-pp”Λp
accumulated in E15-2nd (40 G K-)

Λd / Λpn

σ(K-ppn)*Br 10 µb

N(K- on target) 100 G

N(target) 2.65 x 1023

ε(DAQ) 0.9

ε(trigger) 0.93

ε(beam) 0.55

Ω(CDC) 0.27 / 0.077

ε(CDC) 0.6 / 0.3

N(K-ppn) 19 k / 2.8 k
* improved from E15

17



Expected Spectrum of K-+4He

• Similar parameters obtained with the K-+3HeΛpn 
(arXiv:2006.13433) are adopted to K-ppn/QF/BG shapes

• K-ppn signal [q-independent] can be seen clearly
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@ 3 weeks, 90kW
M(K-ppn) M(K-ppn)

K-+4HeΛd+n K-+4HeΛpn+n

BKppn ~ 40 MeV 

ΓKppn ~ 100 MeV
Qkppn ~ 400 MeV/c

σ(K-ppn)*Br ~ 10 µb
σ(QF)            ~ 10 µb
σ(BG)            ~ 20 µb



Expected Spectrum of K-+4He

• The signals can be enhanced by selecting 0.3 < q < 0.6 GeV/c

• The K−ppn signal will be observed if the σ(K-ppn)*Br is 
more than ~ µb

19

M(K-ppn) M(K-ppn)

K-+4HeΛd+n K-+4HeΛpn+n

BKppn ~ 40 MeV 

ΓKppn ~ 100 MeV
Qkppn ~ 400 MeV/c

@ 3 weeks, 90kW

σ(K-ppn)*Br ~ 10 µb
σ(QF)            ~ 10 µb
σ(BG)            ~ 20 µb



Schedule & Cost
• We would like to perform the proposed experiment 

around 2023
Design & construction: ~2022
Commissioning run : 2023
Performance run followed by Physics run : 2023~
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• Most of the construction 
cost will be covered by 
“MEXT Grant-In-Aid” and 
“RIKEN internal budget”
We are now applying 

“Specially Promoted 
Research (特推)”

In total ~ 600M JPY

SC Magnet

CDC



Summary of the New Project

The new project aims to reveal the properties of the 
light kaonic nuclei from the �𝑲𝑲𝑵𝑵 to �𝑲𝑲𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵
 a powerful probe to understand low energy QCD
 the best approach to cold & high-density nuclear matter

We take a step-by-step approach:
• a �𝑲𝑲𝑵𝑵𝑵𝑵𝑵𝑵 search via 4He(K-,N) reactions as a first step
• followed by a spin/parity measurement of the �𝐾𝐾𝑁𝑁𝑁𝑁 soon
• experimental challenges of �𝐾𝐾𝑁𝑁, �𝐾𝐾𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁, and �𝐾𝐾�𝐾𝐾𝑁𝑁𝑁𝑁 will 

also be followed

We realize the systematic measurements with
 a new 4π cylindrical detector system (CDS)
 the improved K1.8BR beamline spectrometer

21



Requests to PAC
1. stage-1 approval of “the �𝑲𝑲𝑵𝑵𝑵𝑵𝑵𝑵 search via 

4He(K-,N) reactions”

2. Endorse of “the K1.8BR beamline upgrade”

22

We would like to perform the upgrade during the long shutdown in 2021-22



Collaboration of the New Project 23



A first step of the project

Thank you for your attention! 

High intense K beam

New era of kaonic nuclei

New large CDS

via in-flight 4He(K−,N)

ÖWA/Harald Ritsch



Appendix
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Physics Background
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Physics Goal
Reveal the �𝐾𝐾 meson property inside nuclei 

via the �𝑲𝑲𝑵𝑵 interaction

K-N scattering
NPB179(1981)33.

K-p atom
PLB704(2011)113.

A powerful probe to understand low energy QCD
e.g. spontaneous and explicit chiral symmetry breaking

Strongly attractive in I=0 from extensive 
measurements  kaonic nuclei

"K-pp"
PLB789(2019)620.
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PL7(1963)288., PRC65(2002)044005., etc.
Kaonic 
Nuclei

Binding
Energy
[MeV]

Width
[MeV]

Λ(1405) = K−p 27 40

K−pp 48 61

K−ppp 97 13

K−ppn 118 21

28

c.f. Nuclear Binding Energy
few MeV @ A = 2,3

Predicted from attractive �𝑲𝑲𝑵𝑵 interaction in I=0

Kaonic Nuclei



Kaonic 
Nuclei

Binding
Energy
[MeV]

Width
[MeV]

Λ(1405) = K−p 27 40

K−pp 48 61

K−ppp 97 13

K−ppn 118 21
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Predicted from attractive �𝑲𝑲𝑵𝑵 interaction in I=0

Kaonic Nuclei

c.f. Nuclear Binding Energy
few MeV @ A = 2,3

PL7(1963)288., PRC65(2002)044005., etc.

0 1 2 3



Are Kaonic Nuclei Really Compact?

KbarN int.
Chiral SU(3)

(energy dependent)
Phenomenological

(energy independent)

B.E. ~ 20 MeV B.E. ~ 40-70 MeV

In the case of the �𝑲𝑲𝑵𝑵𝑵𝑵 system (JP=0-)

NPA881(2012)98

JPhys17(1991)289

MΛ(1405)~1405, single poleMΛ(1405)~1420, double pole

Compactness (density) also largely depends on calculation methods

compact & dense systemnot compact compared
to pheno. models

30



New Project
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Task for �𝑲𝑲𝑵𝑵
• Theoretically, Λ(1405) is consider to be the �𝐾𝐾𝑁𝑁 quasi-free bound state
• We have revealed the line shape of the �𝐾𝐾𝑁𝑁 → 𝜋𝜋Σ channel via the (K-

,n) reaction at θn=0o in E31

• Size of the Λ(1405) is still important subject to be determined
 Clarify the picture whether a baryonic state or a �𝐾𝐾𝑁𝑁 molcuer

• We deduce the Λ(1405) size via form factor measurement in a 
wide range of q

�𝑲𝑲𝑵𝑵 → �𝑲𝑲𝑵𝑵
Amplitude

in I=0

E31 results

q vs. IM(πΣ)

Exploratory analysis at E31
Λ(1405)

Acceptance &
efficiency

not corrected
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• We determine the spin/parity of the system via its Λp decay
− by introducing a polarimeter composed of a hodoscope and a tracker

• We precisely deduce the system size
− with more statistical data in corporation with theoretical analyses

Task for �𝑲𝑲𝑵𝑵𝑵𝑵
• The �𝐾𝐾𝑁𝑁𝑁𝑁 system is expected to have 𝐽𝐽𝑃𝑃 = 0−

• To determine the spin/parity, “topological analysis of decay particles” 
or “direct measurement of decay particle polarization” is essential

Exploratory analysis at E15
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Task for �𝑲𝑲𝑵𝑵𝑵𝑵𝑵𝑵 and �𝑲𝑲𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵
• Beyond the �𝐾𝐾𝑁𝑁𝑁𝑁, more heavier system must be 

explored to establish the kaonic nuclei
In particular, the �𝐾𝐾𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 system is expected to be the 

most compact system due to an α particle configuration

• We reveal the mass number dependence of the 
binding energy, decay width, and system size

34

the larger nuclei 
 the larger B.E.

would become large if 
the models adopt 
mesonic & non-mesonic
decays



Toward �𝑲𝑲�𝑲𝑲𝑵𝑵𝑵𝑵
• We also wish to access the 

S = −2 kaonic nuclei such as 
the theoretically predicted 
“K-K-pp” state
as previously submitted LoI
A good probe to the �𝐾𝐾𝑁𝑁 int.

• The �𝐾𝐾�𝐾𝐾𝑁𝑁𝑁𝑁 system could 
give us a chance to access 
much higher density than 
the S = −1 kaonic nuclei

35

Proc. Jpn. Acad., B89 (2013) 418.

E31

E15

?

The �𝑲𝑲�𝑲𝑲𝑵𝑵𝑵𝑵 production cross section would be quite small
 roughly 1/1000 of that of the �𝑲𝑲𝑵𝑵𝑵𝑵

K-K-pp

?



“K-ppn” Candidates so far
• A few candidates have been 

reported in inclusive
measurements
E471/E549@KEK

• 4He(stopped-K-,p/n)X
FINUDA@DAΦNE

• Li/C(stopped-K-,Λd)
FOPI@GSI

• Λd in Ni+Ni

• Exclusive measurement 
using a simple reaction 
(in-flight & light nuclei) 
is crucial

 NULL results

 Observed?

 Observed?

4He(stopped-K-,p/n)X
PLB659(2008)107, PLB688(2010)43

Li/C(stopped-K-,Λd)

PLB654(2007)80

Λd in Ni+Ni
EXA05 Conference (2005)
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Schedule of Preparation
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Summary of the Experiment for �𝑲𝑲𝑵𝑵𝑵𝑵𝑵𝑵
Beamline K1.8BR
Primary beam 30 GeV, 90 kW (5.2 s spill interval)
Secondary beam 1.0 GeV/c K-

Beam intensity 3.2 x 105 K- on target per pulse

Detectors
Improved K1.8BR beamline spectrometer,
New cylindrical detector system (CDS)

Target Liquid 4He

Beam time
1 week for commissioning run,
1 week for performance study run with LH2,
3 weeks for physics run with L4He

Expected yield
1.9 x 104 K-ppnΛd,
2.8 x 103 K-ppnΛpn
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Collaboration with Experimental 
& Theoretical Group 
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知文



Apparatus
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Kaon Beam Momentum

• Use 1.0 GeV/c K- beam ( 𝒔𝒔 = 1.8 GeV)
• 𝐾𝐾−𝑁𝑁 → �𝐾𝐾𝑁𝑁 reactions have the maximum cross section

• Due to the intermediate state of Y*(1800)
• low-momentum back-scattered kaon as a ‘off-shell kaon’ beam

• We also plan to perform momentum scan (0.9-1.15 GeV/c) in 
the near future

1.0 GeV/c

PRL83(1999)4701.
𝑲𝑲−𝑵𝑵 → �𝑲𝑲𝑵𝑵 @ θn = 0

41



Target System
• Pulse tube refrigerator system developed 

for P73
• Liquefy all types of H2/D2/3He/4He gases
• Pure Be target cell developed for E15
• System has been successfully operated

42

P73 target system

Be cell

l=13.7cm

φ6
.8

cm



SC Solenoid Magnet

• The same design of the 
“COMET Detector-Solenoid”

• developed by the KEK 
Cryogenic Science Center

• Solenoidal magnetic field of 
0.7T is used (max ~1T)

• external dimensions:
3.4m × 3.4m × 3.9m (25t)

• No need to dig the floor of 
the HD hall

43

Vacuum vessel of SC coil



CDC
• Conical-shaped end-plates

• 29o < θ < 151o

• 15cm < r < 50cm
• wire support: feed-though
• longest wire length: 2.2m

• readout channels is  ~2,150
• existing ASD preamps and 

HUL boards
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BDC/FDC

• Planner chambers
• XX’YY’XX’YY’ config.

• BDC/FDC: 3/3 modules
• placed at 0.5 m, 0.8 m, and 

1.1m up/down-stream
• 30 cm, 50 cm, and 70 cm 

inscribed circle diameters

• ~3,072 channels
• ~(32*8, 64*8, 96*8)*2

• We plan to  construct DCs 
in stages
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NC
• Aiming to detect low-p neutron 

ranging from 100 to 500 MeV/c
• 15cm plastic scintillator divided by 

~3 layers & ~32 segments
• Neutron detection eff. = 15~45% 

depending on momentum

• FM-PMT and MPPC readout for 
barrel and end-cap, respectively

• Barrel NC has ~ 2.5m length

46

• NC is used for trigger counters together with CHC 
(Charge Hodoscope Counter)

• 3mm plastic scintillator with MPPC readout
• Charged/neutral-trigger are generated using combination of 

CHC/NC hits

Neutron eff. / 3cm



ECAL
• A sampling-type calorimeter

• ~15 radiation length is required

• KLOE type or conventional sandwich 
type

• KLOE type
• Lead - scintillating-fiber
• Excellent performance 

• σE/E = 5.7%/sqrt(E(GeV))
• σt = 54/sqrt(E(GeV)) + 50 ps

• Quite expensive: ~ 700M JPY
• sandwich type

• Lead - scintillator-slab with wave-length 
shifting fibers

• Rather low cost: < 100M JPY

47

KLOE EM-CAL

 The second stage of the project



Improved Acceptance of the New CDS

Drastically improved!
 enables us to specify the reaction channel unambiguously

48

e.g. �𝑲𝑲𝑵𝑵𝑵𝑵 → 𝚲𝚲𝒑𝒑, which has been well studied in E15

x2.3 larger acceptance 
for “K-pp”Λp



Improved Acceptance of the New CDS

Drastically improved!
 enables us to specify the reaction channel unambiguously

49

e.g. �𝑲𝑲𝑵𝑵𝑵𝑵 → 𝚲𝚲𝒏𝒏, which cannot be seen in E15



Results of E15

50



What We Did in E15
- experimental search for the �𝑲𝑲𝑵𝑵𝑵𝑵 -

• via the 3He(in-flight K-,n) reaction @ 1.0 GeV/c

• 𝐾𝐾−𝑁𝑁 → �𝐾𝐾𝑁𝑁 reactions have the maximum cross section
• low-momentum back-scattered kaon as a ‘off-shell kaon’ beam
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Identification of Λpn Final State
52

arXiv:2006.13433
Missing-n identification Λ reconstruction



IM(Λp) vs. Momentum Transfer qKn
53

q
Kn

E15 collab., PLB789(2019)620.

IM(Λp)
M

(K
+p

+p
)



• Can be interpreted as
3 components

– Bound state
• centroid DOES NOT 

depend on qKn

IM(Λp) vs. Momentum Transfer qKn
54

q
Kn

E15 collab., PLB789(2019)620.

IM(Λp)
M

(K
+p

+p
)

BS



• Can be interpreted as
3 components

– Bound state
• centroid DOES NOT 

depend on qKn

– Quasi-elastic K- abs.
• centroid depends on qKn

IM(Λp) vs. Momentum Transfer qKn
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• Can be interpreted as
3 components

– Bound state
• centroid DOES NOT 

depend on qKn

– Quasi-elastic K- abs.
• centroid depends on qKn

– Background
• Broad distribution

IM(Λp) vs. Momentum Transfer qKn
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 Fit the spectrum 
with 3 components



IM(Λp) vs. Momentum Transfer qKn
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IM(Λp)

E15 collab., PLB789(2019)620.

• Fit with 3 components
– Bound state

• centroid DOES NOT 
depend on qKn

• BW*(Gauss form-factor)q
Kn K-

3He

1 GeV/c

n

Λ

p

n
“x”



IM(Λp) vs. Momentum Transfer qKn
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IM(Λp)

E15 collab., PLB789(2019)620.

• Fit with 3 components
– Quasi-elastic K- abs.

• centroid depends on qKn

• Followed by Λp
conversion

2NA:
“n” is a spectator

q
Kn

forward “n”

K-
3He

1 GeV/c

n

Λ

p

n
p

p

K-



IM(Λp) vs. Momentum Transfer qKn
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IM(Λp)
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• Fit with 3 components
– Background

• Broad distribution
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IM(Λp) vs. Momentum Transfer qKn
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IM(Λp)

E15 collab., PLB789(2019)620.

• Fit with 3 components
– Bound state

• centroid DOES NOT 
depend on qKn

• BW*(Gauss form-factor)

– Quasi-elastic K- abs.
• centroid depends on qKn

• Followed by Λp
conversion

– Background
• Broad distribution

q
Kn



arXiv:2006.13433 (submitted to PRC)
• We have improved the analysis with

• Σ0pn channel
• Σ-pp background

• Parameters have been updated
• consistent with previous values

61

Σ0pn FSΣ-pp FS

MM(Λp)

No structure
below M(Kpp)

Spectrum above mn in MM(Λp) 
is well reproduced with 

inclusion of the Σ0pn channel

Σ0pn FS

mn



• Binding energy: ~40 MeV
• Deeper than chiral-SU(3) 

based theoretical predictions

• Width: ~100 MeV
• Seems to be larger than 

theoretical calculations 
(mesonic πY decays only)

Observed “K-pp”

Chiral

Phenomenological

K-3HenX

the most reliable observation
- simple K- induced reaction
- exclusive measurement
- good BG separation from 2NA

62



• Spin/Parity of the “K-pp”
• New 4π detector system is needed

• Other decay channels
• πΣN mesonic decay is theoretically expected to be 

the dominant channel
• Only YN non-mesonic decays were reported

• Reaction mechanism
• Relation between Λ(1405) & “K-pp”

• Λ(1405) has been considered as “K-p”
• Theoretically, “K-pp” is expected to be produced via 
Λ(1405)+p”K-pp” door-way process

63We need further understanding



K- 3He  πΣpn Measurement 64

• Exclusive measurement of 
𝛑𝛑±𝚺𝚺∓𝐩𝐩𝐩𝐩 final state in K-+3He

• Experimental challenge of neutron 
detection with thin scintillation 
counter (t=3cm) 10cm

t = 3cm

n detection efficiency ~ 3-10%

K- n
3He

“X”

n

1 GeV/c
Σ

π

π

CDS

p



πΣpn Events 65

IM(nπ+) vs MM(π+π-pn) IM(nπ-) vs MM(π+π-pn)

π-Σ+p nmiss π+Σ-p nmiss

nmiss

Σ+ Σ-

nmiss



πΣpn Identification 66

π-Σ+p nmiss

π+Σ-p nmiss



BG Subtracted IM(𝛑𝛑±𝚺𝚺∓) in 𝛑𝛑±𝚺𝚺∓𝒑𝒑𝒑𝒑 67



𝒀𝒀∗𝒑𝒑𝒑𝒑 Final State
68

IM(𝛑𝛑±𝚺𝚺∓)

Λ(1520)

Λ(1405)

Σ (1385) 0
~ 90-160 µb

[evaluated from
Σ (1385)+/-π+/-Λ

measurement]

~ 100 µb

~ 200 µb
Fit with BW:
M ~ 1425 MeV
Γ ~ 30 MeV

(Σ(1385)πΛ/πΣ : 87.0/11.7%)

πΣpn
non-resonant



𝚲𝚲(𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏)𝒑𝒑𝒑𝒑 Final State Selection 69

IM(𝛑𝛑±𝚺𝚺∓)Select 
Λ(1405) 
region

• Below Λ(1520)
• Small contribution 

from Σ(1385) 



IM(πΣp) in Λ(1405)pn Final State 70

IM(𝛑𝛑±𝚺𝚺∓𝒑𝒑) Dominant above the threshold
M

(K
pp

)

• IM(Λ(1405)p) distributes above the M(Kpp)
• QF K-NKbarn followed by KbarNNΛ(1405)p



“Kpp”πΣp Decay? 71

IM(𝛑𝛑±𝚺𝚺∓𝒑𝒑)

Dominant above 
the thresholdM

(π
Σp

)
Kp

p
M

(K
pp

)
This will be due to phase-

space limitation of
“K-pp”πΣN decay.

BUT, statistically,
NO significant structure

“Kpp”πΣN decay is 
expected to be the 
dominant channel



PS Limitation of “K-pp”πΣp Decay

72

IM(𝛑𝛑±𝚺𝚺∓𝒑𝒑)

Kpp BW obtained with Λp

Phase space of πΣpn

[BW] * [phase space]

72



Comparison of Λpn & Λ(1405)pn 73

Λpn
M

(K
pp

)

Large CS of the 
Λ(1405)pn compared 

to the ΛpnKp
p
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M
(K

pp
)

in 0.35<q<0.65 GeV/c

Kp
pΛpn



Comparison of Λpn & Λ(1405)pn
75

M
(K

pp
)

in 0.35<q<0.65 GeV/c

′𝐊𝐊′ + 𝐩𝐩𝐩𝐩 𝐑𝐑 → “K-p”+p
Intrinsic mK < EK

Λ(1405)p production is dominant 
compared to Λp
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M
(K

pp
)

in 0.35<q<0.65 GeV/c

′𝐊𝐊′ + 𝐩𝐩𝐩𝐩 𝐑𝐑 → “K-p”+p
Intrinsic mK < EK

K-
3He

1 GeV/c

n
“K-pp”

n
p

p

‘K-’

EK < intrinsic mK

′�𝐊𝐊′ + 𝐩𝐩𝐩𝐩 𝐑𝐑 → “K-pp”

“K-pp” production is dominant
Λp decay widely opens due to PS 

limitation of πΣN

Λpn

Kp
p

Λ(1405)p production is dominant 
compared to Λp

K-
3He

1 GeV/c

n

“K-p”

p

n
p

p
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Conclusion

• We observed the “K-pp” 
bound state in 3He(K-,Λp)n

• Binding energy: ~40 MeV
• Width: ~100 MeV

• We found large CS of the 
Λ(1405)p formation 
compared to the “K-pp”

• quite important information on the 
production mechanism of the “K-pp”

 paper in preparation

 PLB789(2019)620./arXiv:2006.13433
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Added Materials
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K1.8BR Beamline Optics
79

D5

ve
rt

ic
al

ho
riz

on
ta

l
ve

rt
ic

al
ho

riz
on

ta
l

Present

Modified



Spin-Parity of �𝑲𝑲𝑵𝑵𝑵𝑵
80

T.Nagae, “The 4th Symposium on Clustering as a window on the 
hierarchical structure of quantum systems”,  May 28th, 2020

Λ p
½+ ½+L=1

+



Spin-Parity of �𝑲𝑲𝑵𝑵𝑵𝑵
• Λ polarization can be 

measured via π-p decay

81

Λ p
½+ ½+L=1

+

• Proton polarization is 
measured with a polarimeter

• Tracking system
• Plastic scintillator

Λ pol. in K-+pπ0Λ

Past meas.
E15 data

good agreement

𝑑𝑑𝑑𝑑
𝑑𝑑 cos𝜃𝜃 ∝ (1 + 𝛼𝛼𝛼𝛼 cos𝜃𝜃)
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