P15: A search for deeply-bound kaonic nuclear states by in-flight ³He(*K*, *n*) reaction at J-PARC

S. Ajimura^a, G. Beer^b, H. Bhang^c, P. Buehler^d, M. Cargnelli^d, J. Chiba^e, S. Choi^c, C. Curceanu^f, F. Diego^g H. Fujioka^{h*}, T. Fukudaⁱ, Y. Fukuda^j, C. Guaraldo^f,
T. Hanaki^e, R. S. Hayano^h, A. Hirtl^d, M. Iio^k, M. Iliescu^f, T. Ishikawa^h, S. Ishimoto^l, T. Ishiwatari^d, K. Itahashi^k, <u>M. Iwasaki^{k,j†}</u>, P. Kienle^{d,m}, B. Luigiⁿ, J. Marton^d, Y. Matsuda^k, Y. Mizoiⁱ, <u>T. Nagae^{l‡}</u>, H. Ohnishi^{k§}, S. Okada^k, M. Ombretta^o,
H. Outa^k, A. Sakaguchi^a, M. Sato^j, M. Sekimoto^l, D. Sirghi^f, F. Sirghi^f, S. Suzuki^l, T. Suzuki^{k¶}, D. Tomono^k, A. Toyoda^l, H. Tatsuno^h, E. Widmann^d, T. Yamazaki^k, H. Yim^c, J. Zmeskal^d

M. Iwasaki

Why dense matter?

Why proton is heavy?

quark-antiquark condensation (Nanbu)

Theoretical backgrounds ...

Possible Existence of K- Light Nucleus Bound States A.E. Kudryavtsev, V.D. Mur, V.S. Popov (Moscow, ITEP) Phys. Lett. B143: 41-44, 1984

On Possibilities of Narrow Nuclear States of K-S. Wycech (Warsaw, Inst. Nucl. Studies) . 1986 Nucl. Phys. A450: 399c-402c, 1986

Kaonic nuclei excited by the (K-, N) reaction. T. Kishimoto (Osaka U.) Phys.Rev.Lett.83:4701-4704,1999

Nuclear anti-K bound states in light nuclei. Y. Akaishi (KEK), T. Yamazaki (RIKEN) Phys. Rev. C65: 044005, 2002

(K-,pi-) production of nuclear anti-K bound states in proton-rich systems via Lambda* doorways. T. Yamazaki (RIKEN) , Y. Akaishi (KEK) Phys. Rev. C65: 044005, 2002

Does $\Lambda(1405)$ can be a 400member of pentaguark? 500

most fundamental system beyond A(1405)

Theoretically

deep & narrow? dense & stable? easy to find?

1. No theory against for kaon-bound.

- 2. Binding energy can be shallower.
- 3. Width can be wider.

than Akaishi & Yamazaki

Extremely interesting object to search for ...

Kaon beam momentum selection

Momentum transfer

Elementary cross section

- Neutrons from ³He(K-,n) are accelerated!!
- Elementary cross section has peak around 1.0 GeV/c

Use kaon beam @ 1.0 GeV/c

Event display

- Conceptual detector in GEANT4 simulation
- Assumed K⁻pp BE = 100 MeV
- Neutron hit on the forward neutron-counter wall required

Event rate estimation

Parameters

- Assume production cross section as $\sigma_{3He(K-,n)K-pp} = 10 \mu b/sr$
- Acceptance of Neutron counter = 19.4 msr
- Target thickness = 20cm, density = 0.080 g/cm³
- Neutron detection efficiency = 30%
- Assume 1/3 of K-pp decay in to $(\Lambda + p \text{ or } \Sigma^0 + p)$
- Λ +p reconstruction efficiency in CDC = 47%

Expected event rate

- 1.86x10⁻⁹ per an incident K⁻
- Event rate per day @ K1.8BR
 - 0.8x10⁶ K- per 3.53s (0.7s flat top)
 - 24475 spill per day = 1.96x10¹⁰ K- per day
 - ~ 35 events per day

Summary table for the request

reaction	in-flight ³ He(K ⁻ , n)
primary beam	30GeV, 9µА
secondary beam	1GeV/c
beam line	K1.8BR
target	liquid He: 6.4 cm <i>dia</i> . 15 cm <i>long</i>
detectors	beam line counters & chambers: P17 CDS: 1m <i>dia</i> ., 1m <i>long</i> , 0.75T: P17 inner tracker: new TOF: KEK PS-E549
beam time	 ~ 1 month @ full intensity ~ 4 month @ 2μA <i>cf</i> : 1 month @ 1μA with looser trigger

Proposed Experiment 1. In-flight method for better S/N (proven by BNL-E930) + excluding QF background! 2. Exclusive detect both formation and decay 3. Most fundamental system avoid complex spectral structure answer nature of $\Lambda(1405)$ Present to GOOD data for detailed theoretical study

