K1.8BR Beam-time Plan and

Analysis Status of E15-1st

Search for "K⁻pp" state via ³He(K⁻,n) reaction @ $p_{k} = 1$ GeV/c

> **M.Iwasaki** for J-PARC E15 Collaboration

Formation vs Decay

Formation channel semi-inclusive

 $K^- + {}^{3}He \rightarrow n + X (\theta_n=0)$

- excess below threshold background-free
- contribution from Λ(1405)n + p_s (2NA) may exist

Decay channel exclusive

$K^{-} + {}^{3}He \rightarrow \Lambda + p + n_{mis.}$

- excess exist near threshold
- cannot be Λ(1405)n + ps
 (2NA), because F.S.= Λpn
- contamination Σ⁰ < 20%</p>

presentation of 18th PAC

E15 2nd stage

The goal of the E15 2nd

- confirm the spectral shape of the Λp invariant-mass by the exclusive measurement of ³He(K⁻,Λp)n_{mis}.
- explore the neutron spectrum at θ_{lab}=0 with aid of kinematically complete measurement of ³He(K⁻, Λpn)
- 3. extend study on other channel, like ³He(K⁻,Σπpn)

to extract more information on the K^{bar}N interaction

Approved Beam-time at 18th-PAC

1 GeV/c K⁻ yield = 140 k/spill (=Run49c) previously achieved value May, 2013 140 k/spill 88 h 5.1 x 10⁹ (30 Tppp, 6s) (Run#49c) 1. Commissioning run – ~1 day 2. Calibration run with H2-target $\rightarrow p(K^{-},K^{0})n_{forward}$: ~5x10³ corrected – ~4 days E31 pilot run with D2-target $-14*10^9$ kaons on target = **~10 days** 4. E15 2nd-stage production run with ³He-target - <u>50*10⁹ kaons on target</u> = ~40 days

---- Report from 18th PAC ----

"The beam request of the 2nd stage is reasonable and necessary to further study the K-pp system, and supports the beam request." ⁵

K1.8BR Beam-time Plan *--- under updated situation ---*

Expected K- yield in Feb.-Mar., 2015

--- based on Run#49c condition ---

	Primary-beam	Secondary-kaon	Kaons on target / day
	intensity	intensity	(w/ tgt selection)
May, 2013 (Run#49c)	24 kW (30 Tppp, 6s)	140 k/spill	1.4 x 10º /day

previously achieved value

* production target: Au 50% loss, spill length: 2s, spill duty factor: ~45%, K/pi ratio: ~1/2 * ~70% of beam kaons hit the fiducial volume of ³He target

• f_{T1}
• 0.8 [T1 optics modification]
• f_{spill}
• 0.67 [space cycle 6s → 9s (2.93s flat-top)]Primary-beam
intensitySecondary-kaon
intensityKaons on target / day
(w/ tgt selection)Feb.-Mar,
201530 Tppp, 9s110 k/spill0.7 x 10⁹/day

"Updated" Beam-time Plan @ K1.8BR

		Primary- beam intensity	Kaons on target	Duration	Objectives
Feb Mar., 2015	Commissioning	30 Tppp, 9s		1 day	beam-line optimization
Feb Mar. <i>,</i> 2015	Calibration (H2)	30 Tppp, 9s	4*10 ⁹	6 days	calibration of the NC [p(K ⁻ ,K ⁰ _s)n: 5000 events]
- Jun., 2015	E31-pilot (D2)	30 Tppp, 9s (30 Tppp, 6s)	14*10 ⁹	20 days (13 days)	Λ (1405)→ $\pi^+\Sigma^-$: 750 → $\pi^-\Sigma^+$: 120 → $\pi^0\Sigma^0$: 33
Oct Mar., 2016	E15-2 nd (³ He)	60 Tppp, 6s 50 kW (6s)!	50*10 ⁹	25 days	 ³He(K⁻,n)X + tagging ³He(K⁻,Λp)n: 2,000 ³He(K⁻,Λpn): 100

Analysis Status of E15-1st

Spectrum below the Threshold

- No significant structure in the deep-binding region
- Excess (tail) exist just below K⁻pp threshold

kinematically complete, w/ 4-momenta conservation

Decay Channel, Exclusive ³He(K⁻, pπ⁻(Λ)p)n

revised analysis!
 pπ⁻ (=Λ) pair defined by probability
 to improve the Λ definition

Global Fitting

- 2NA and 3NA processes are taken into account
- $\chi 2$ / NDF = 605/254
- missing-neutron events: 220
 - Λpn:68%, Σ^0 pn:23%, Λpn π^0 :7%

not all the Ap events are of interest

³He(K⁻,∧p)n Events

kinematically complete, w/ 4-momenta conservation

- structure found near K⁻pp threshold
- 2NA reaction $K^-+^3He \rightarrow \Lambda+p+n_s$ seem to be very weak
- 3NA reaction $K^-+^3He \rightarrow \Lambda+p+n$ exist, but weak as well
- 2NA Λ(1405) production excluded; Λ(1405)+n+p_s (2NA)

Angular distribution of the excess

Kinematically-complete ³He(K⁻, ∧pn)

redundant w/ 4-momenta conservation

- Formation neutron selectively (no effect from Λp / Σ⁰p)
- 3NA largely suppressed (consistent with n_{mis.} events)
- more data awaited

Summary

- K1.8BR beam-time plan:
 - Before the summer of 2015 [30 Tppp, 9s] ~24 kW
 - Commissioning: 1 day
 - Calibration (H2): 6 days
 - E31 pilot-run (D2): 20 days (13 days @ 6s)
 - Before the end of JFY2015 [60 Tppp, 6s] 50 kW!
 - E15-2nd (³He): 25 days
- Analysis status of E15-1st
 - Inclusive (K⁻,n)X: submitted to PLB
 - Exclusive $(K^{-}, \Lambda p)n$: will be finalized soon

The J-PARC E15 Collaboration

S. Ajimura^a, G. Beer^b, H. Bhang^c, M. Bragadireanu^e, P. Buehler^f, L. Busso^{g,h}, M. Cargnelli^f, S. Choi^c, C. Curceanu^d, S. Enomotoⁱ, D. Faso^{g,h}, H. Fujioka^j, Y. Fujiwara^k, T. Fukuda^l, C. Guaraldo^d, T. Hashimoto^k, R. S. Hayano^k, T. Hiraiwa^a, M. Iio^o, M. Iliescu^d, K. Inoueⁱ, Y. Ishiguro^j, T. Ishikawa^k, S. Ishimoto^o, T. Ishiwatari^f, K. Itahashiⁿ, M. Iwai^o, M. Iwasaki^{m,n*}, Y. Katoⁿ, S. Kawasakiⁱ, P. Kienle^p, H. Kou^m, Y. Maⁿ, J. Marton^f, Y. Matsuda^q, Y. Mizoi^l, O. Morra^g, T. Nagae^{j‡}, H. Noumi^a, H. Ohnishiⁿ, S. Okadaⁿ, H. Outaⁿ, K. Piscicchia^d, M. Poli Lener^d, A. Romero Vidal^d, Y. Sada^j, A. Sakaguchiⁱ, F. Sakumaⁿ, M. Satoⁿ, A. Scordo^d, M. Sekimoto^o, H. Shi^k, D. Sirghi^{d,e}, F. Sirghi^{d,e}, K. Suzuki^f, S. Suzuki^o, T. Suzuki^k, K. Tanida^c, H. Tatsuno^d, M. Tokuda^m, D. Tomonoⁿ, A. Toyoda^o, K. Tsukada^r, O. Vazquez Doce^{d,s}, E. Widmann^f, B. K. Weunschek^f, T. Yamagaⁱ, T. Yamazaki^{k,n}, H. Yim^t, Q. Zhangⁿ, and J. Zmeskal^f

(a) Research Center for Nuclear Physics (RCNP), Osaka University, Osaka, 567-0047, Japan •

(b) Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6, Canada [+]

(c) Department of Physics, Seoul National University, Seoul, 151-742, South Korea 🍽

(d) Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy

(e) National Institute of Physics and Nuclear Engineering - IFIN HH, Romania 🚺

(f) Stefan-Meyer-Institut für subatomare Physik, A-1090 Vienna, Austria 💳

(g) INFN Sezione di Torino, Torino, Italy

(h) Dipartimento di Fisica Generale, Universita' di Torino, Torino, Italy 🛽

(i) Department of Physics, Osaka University, Osaka, 560-0043, Japan •

(j) Department of Physics, Kyoto University, Kyoto, 606-8502, Japan •

(k) Department of Physics, The University of Tokyo, Tokyo, 113-0033, Japan •

(I) Laboratory of Physics, Osaka Electro-Communication University, Osaka, 572-8530, Japan •

(m) Department of Physics, Tokyo Institute of Technology, Tokyo, 152-8551, Japan •

(n) RIKEN Nishina Center, RIKEN, Wako, 351-0198, Japan •

(o) High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan •

(p) Technische Universität München, D-85748, Garching, Germany 💻

(q) Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan •

(r) Department of Physics, Tohoku University, Sendai, 980-8578, Japan 🔸

(s) Excellence Cluster Universe, Technische Universität München, D-85748, Garching, Germany 💻

(t) Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 139–706, South Korea 🔅

(*) Spokesperson

(\$) Co-Spokesperson

Thank you for attention!

Backup

³He(K⁻, n): hint in exclusive ³He(K⁻,π⁺π⁻pn)n

³He(K⁻, n): hints in Λ /pp-tagging

 tagging method would address the origin of the sub-threshold excess

Semi-Inclusive ³He(K⁻,n/p)X M.M. spectrum

³He(K⁻,p) spectrum looks similar to (K⁻,n)

p(K⁻,K⁰_S)n_{forward} yield (n in NC acc.)

- $N_t = 5.8 \times 10^{23} / cm^2$
 - ρ = 70.85*10⁻³ g/cm³
 - I = 13.67 cm
- $N_{\kappa} = 1.1*10^5 / \text{spill/9s}$ [run#49c * 0.8]
- $\sigma = 3.92*10^{-27} \text{ cm}^2 (= 7.84 \text{ mb} * 0.5)$ [past measurement]
- ϵ (decay*(CDS*NC acc)) = 5.4*10⁻³ [Monte-Carlo]
- ε(beam ana) = 0.65
- ε(loss) = 0.97
- ε (fiducial selection) = 0.70 -[*Run#49c condition*]
- ε(trig*DAQ) = 0.80
- ε (analysis) = 0.90
- K*CDH2 pre-scale = 1/5 [~ run#49c / 0.8]

expected error: K_{s}^{0} in CDS w/ NC acc. ~ 3400 K_{s}^{0} & n detection ~ 800 \rightarrow NC eff. ~ 0.23 +/- 0.007(stat.)

\rightarrow 3.4x10³ per 4 days (w/o NC eff.)

Neutron detection efficiency

d(K⁻,n)∧(1405) yield

E31 status report, May, 2014 Table I: Yield estimation 1.4x10⁵ ppp 1.1x10⁵ Beam Intensity 24 kW primary beam Density: 0.169 g/cm² D₂ Target (Fiducial Vol.) $10 \,\mathrm{cm}$ Efficiency 0.63Beam tracking Select single tracks Fiducial cut for the beam size 0.70CDS tracking 0.92[Run#49c condition] Neutron detection 0.230.815Data Acquisition NC solid angle 22 msrYield/IDdays 20 days Decay mode/ Cross section [3] Mode ID efficiency 220 µb 7500.2 $\pi^+\Sigma^-/$ 97 µb 0.07 $\pi^{-\Sigma^{+}/}$ - [prediction] 120 $\pi^0\Sigma^0/$ 128 µb 0.01533

Typical Trigger Condition in 1GeV/c K⁻ + ³He @ Run#49c [24 kW (30 Tppp)]

Table 2.11 :	Summary	of trigger	conditions.
----------------	---------	------------	-------------

	request	pre-scale	accept	
	/ spill	factor	/ spill	main usage
$BHD \otimes T0$	610k	50k	10	monitor AC&DEF
K_{beam}	145k	7k	17	normarisation
$K_{beam} \otimes CDH^{1hit}$	48k	70	70	
$K_{beam} \otimes CDH^{2hit}$	21k	7	280	Λp events
$K_{beam} \otimes \text{CDH}^{1hit} \otimes \text{Neutral}$	230	1	170	(K^-, n)
$K_{beam} \otimes \text{CDH}^{1hit} \otimes \text{Charged}$	130	1	100	(K^-, p)
$\pi_{beam} \otimes \overline{BVC} \otimes Neutral$	480	10	40	NC calibration
$K_{beam} \otimes \overline{BVC} \otimes Neutral$	850	10	70	
Total	8.5k		680	$(1^{st} \text{ accept} \sim 6.9 \text{k})$

Doctor thesis, T. Hashimoto, The University of Tokyo, 2014.3

The tail structure is not due to "the detector resolution"

E15 and Theoretical Spectra

Angular distribution of the excess

