Status Report of E15 1st stage and Request for 2nd stage

Search for "Kpp" state via ³He(K⁻,n) reaction

M.Iwasaki for J-PARC E15 Collaboration

Formation channel

A member received a doctor's degree on this subject.

14年5月15日木曜日

14年5月15日木曜日

Formation channel: small 2NA (non-mesonic)

Y* mass spectra assumed B.W. with PDG mass & width

- $\Lambda N / \Sigma N$ 2NA branches are negligibly small
- excess by $\Lambda(1405)n + p_s(2NA)$ cannot be excluded
- small q_K ~200 MeV/c equally prefers Σ(1385)/Λ(1405)/Λ(1520)
 - rather large Cross Section ~5mb/sr needed
 - if large $\Lambda(1520)$ n exist, why no hint of $\Lambda(1520)$ n?

Decay channel

Another member preparing thesis for doctor's degree on this subject.

14年5月15日木曜日

Decay channel - for exclusive ${}^{3}\text{He}(K^{-},\Lambda p)n_{mis.}$

Br(Σ⁰pn)/{Br(Λpn) + Br(Σ⁰pn)} < 20% from fitting with simulation

- $K^{-3}He \rightarrow \Lambda(\Sigma^0)$ pn events identified
 - # of $\Lambda(\Sigma^0)$ pn events: ~190
 - Σ^0 pn contamination: ~20%

Decay channel - for exclusive ${}^{3}\text{He}(K^{-},\Lambda p)n_{mis.}$

from fitting with simulation

• $K^{-3}He \rightarrow \Lambda(\Sigma^0)$ pn events identified

– # of $\Lambda(\Sigma^0)$ pn events: ~190

• Σ^0 pn contamination: ~20%

- total CS : ~210 μb (~ 0.1% of total cross section of K⁻³He) assuming CS proportional to phase-space
 - another excess seen near the threshold
 - cannot be $\Lambda(1405)n + p_s(2NA)$, because of Λpn F.S.
 - is 3NA exist beyond 2NA?

- total CS : ~210 μb (~ 0.1% of total cross section of K⁻³He) assuming CS proportional to phase-space
 - another excess seen near the threshold
 - cannot be $\Lambda(1405)n + p_s(2NA)$, because of Λpn F.S.
 - is 3NA exist beyond 2NA?

Formation vs Decay

Formation channel semi-inclusive

exclusive

 $K^- + {}^{3}He \rightarrow n + X (\theta_n=0)$

- excess below threshold
- contribution from $\Lambda(1405)n + p_{s}(2NA)$ may exist

Formation channel Decay channel Exclusive analysis with full kinematics

limited in statistics

Kinematically-complete measurement of ${}^{3}\text{He}(K^{-}, \Lambda pn)$

- Consistent with previous analysis
- To study, x100 (at least x10) beam is required
- will extend exclusive analysis on other final state (F.S.)

Summary of E15 1st stage

- E15 1st stage was successfully completed!
 - -<u>Semi-inclusive channel</u>
 - 3 He(K⁻,n) \rightarrow excess below \overline{K} NN threshold
 - naively attractive & absorptive $\overline{K}N$ to explain the excess
 - excess = $\Lambda(1405)n + p_s(2NA)$ cannot be excluded
 - <u>Exclusive channel</u>
 - 3 He(K⁻, Λp)n \rightarrow excess around \overline{K} NN threshold
 - excess cannot be Λ(1405)n + p_s (2NA)
 - statistics is very limited at the 1st stage one received doctor's title, four on their way...

 We need definitely more data to investigate the K^{bar}N interaction by exclusive analyses!

E15 2nd stage

The goal of the E15 2nd

- confirm the spectral shape of the Λp invariant-mass by the exclusive measurement of ³He(K⁻,Λp)n
- explore the neutron spectrum at θ_{lab}=0 with the kinematically complete measurement of ³He(K⁻, Λpn)
- 3. extend study on other channel, like 3 He(K⁻, $\Sigma \pi pn$)

to extract more information on the K^{bar}N interaction

Beam-time Plan @ K1.8BR

1 GeV/c K⁻ yield = 100 k/spill (=f_{24GeV}*f_{T1}*Run49c)

 $f_{24GeV} \sim 0.9 \text{ [MR 30} \rightarrow 24GeV], f_{T1} \sim 0.8 \text{ [T1 modification]}$

1. Commissioning run

- ~1 day

- 2. Calibration run with H2-target
 - -~4 days $\rightarrow p(K^-, K^0)n_{forward}$: ~2x10⁴
- 3. E31 pilot run with D2-target

- <u>14*10⁹ kaons on target</u> = **~14 days**

4. E15 2nd-stage production run with ³He-target
− 50*10⁹ kaons on target = ~56 days

Conclusion

- We accomplished the E15 1st stage.
 - 5×10^9 kaons on target (in May, 2013)
 - The aims of the E15^{1st} were successfully achieved
 - Fruitful results have been obtained
- We request x10 beam-time as 2nd stage.
 - 50x10⁹ kaons on target
 - study observed excess given in the E15 1st stage
 - extend exclusive analysis to other final states

The J-PARC E15 Collaboration

http://ag.riken.jp/J-PARC/collaboration/

S. Ajimura^a, G. Beer^b, H. Bhang^c, M. Bragadireanu^a, P. Buehler^f, L. Busso^{g,h}, M. Cargnelli^f, S. Choi^c, C. Curceanu^d, S. Enomotoⁱ, D. Faso^{g,h}, H. Fujioka^j, Y. Fujiwara^k, T. Fukuda^l, C. Guaraldo^d, T. Hashimoto^k, R. S. Hayano^k, T. Hiraiwa^j, M. Iio^c, M. Iliescu^d, K. Inoueⁱ, Y. Ishiguro^j, T. Ishikawa^k, S. Ishimoto^c, T. Ishiwatari^f, K. Itahashiⁿ, M. Iwai^o, M. Iwasaki^{m,n*}, S. Kawasakiⁱ, P. Kienle^p, H. Kou^m, Y. Maⁿ, J. Marton^f, Y. Matsuda^q, Y. Mizoi^l, O. Morra^g, T. Nagae^{j‡}, H. Noumi^a, H. Ohnishiⁿ, S. Okadaⁿ, H. Outaⁿ, K. Piscicchia^d, M. Poli Lener^d, A. Romero Vidal^d, Y. Sada^j, A. Sakaguchiⁱ, F. Sakumaⁿ, M. Sato^k, A. Scordo^d, M. Sekimoto^o, H. Shi^k, D. Sirghi^{d,e}, F. Sirghi^{d,e}, K. Suzuki^f, S. Suzuki^o, T. Suzuki^k, H. Tatsuno^d, M. Tokuda^m, D. Tomonoⁿ, A. Toyoda^o, K. Tsukada^r, O. Vazquez Doce^{d,s}, E. Widmann^f, T. Yamazaki^{k,n}, H. Yim^t, and J. Zmeskal^f

- (a) Research Center for Nuclear Physics (RCNP), Osaka University, Osaka, 567-0047, Japan .
- (b) Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6, Canada I+I
- (c) Department of Physics, Seoul National University, Seoul, 151-742, South Korea 🔅
- (d) Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy 🛽 🖡
- (e) National Institute of Physics and Nuclear Engineering IFIN HH, Romania
- (f) Stefan-Meyer-Institut für subatomare Physik, A-1090 Vienna, Austria 💳
- (g) INFN Sezione di Torino, Torino, Italy
- (h) Dipartimento di Fisica Generale, Universita' di Torino, Torino, Italy
- (i) Department of Physics, Osaka University, Osaka, 560-0043, Japan •
- (j) Department of Physics, Kyoto University, Kyoto, 606-8502, Japan •
- (k) Department of Physics, The University of Tokyo, Tokyo, 113-0033, Japan
- Laboratory of Physics, Osaka Electro-Communication University, Osaka, 572-8530, Japan
- (m) Department of Physics, Tokyo Institute of Technology, Tokyo, 152-8551, Japan .
- (n) RIKEN Nishina Center, RIKEN, Wako, 351-0198, Japan
- (o) High Energy Accelerator Research Organization (KEK), Tsukuba, 305–0801, Japan •
- (p) Technische Universität München, D-85748, Garching, Germany =
- (q) Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan .
- (r) Department of Physics, Tohoku University, Sendai, 980-8578, Japan •
- (s) Excellence Cluster Universe, Technische Universität München, D-85748, Garching, Germany 💳
- (t) Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 139-706, South Korea 🔅
- (*) Spokesperson
- (\$) Co-Spokesperson

backup

Embedding K⁻ in nucleus

Motivation of J-PARC E15

- understand KN interaction below threshold
- K mass modification / high density matter?

Λ(1405) as K⁻p bound state? K⁻ bound state in nuclei? high density nuclear matter?

Y.Akaishi & T.Yamazaki, PLB535, 70(2002).

"Kpp" candidates in Λp invariant mass

р (р, К+) Ар @ Т = 2.85 GeV

E15 1st stage

Took half of scheduled ~15/30kW*week

~1% of the approved proposal (270kW*4weeks)

	Primary-beam intensity	Secondary-kaon intensity	Duration	Kaons on target (w/ tgt selection)
March, 2013 (Run#47)	14.5 kW (18 Tppp, 6s)	80 k/spill	30 h	1.1 x 10 ⁹
May, 2013 (Run#49c)	24 kW (30 Tppp, 6s)	140 k/spill	88 h	5.1 x 10 ⁹

* production target: Au 50% loss, spill length: 2s, spill duty factor: ~45%, K/pi ratio: ~1/2 * ~70% of beam kaons hit the fiducial volume of ³He target

All detector systems worked well as designed.
 – presented in the previous (17th) PAC meeting

Formation channel: mesonic-2NA / 3NA also small

- sum of $Yn\pi/YNN$ is estimated to be below 5mb/sr
- contributions in the binding region are negligible

³He(K⁻,n): mesonic-2NA & 3NA?

14年5月15日木曜日

Upper limit of Cross Section by formation channel

- No clear structure was found in B.E. ~ 100 MeV/c²
- $d\sigma/d\Omega(\theta_{lab}=0^\circ)$ upper limit ~0.3 mb/sr (95% C.L.)

	B.E. (MeV)	Γ (MeV)	95% C.L. (mb/sr)
FINUDA	115	67	~0.2
DISTO	103	118	~0.3

Lorentz invariant 3-body phase space is proportional to $\Delta T_1 \times \Delta T_2$

easy to see kinematics

symmetric representation

³He($K^-,\Lambda p$)n: Comparison with Phase-Space

data cannot be reproduced by the phase-space? ²⁵

Achievement of the E15 1st

4 objectivities of E15^{1st} @ 13th PAC meeting, Jan.2012

- 1. ³He(K⁻, n) spectrum below the K^{bar}NN threshold
 - significant excess below the threshold
 - > No clear structure in B.E ~ 100 MeV/ c^2
- 2. Hint of signal in Λ +p+n final states
 - widely distributes over the phase-space?
 - excess around the threshold?
- 3. Investigation of the **background processes**
 - → absence of K⁻NN→ Λ N/ Σ N 2NA reactions
- 4. Realistic beam-time for the E15 full experiment.

more than x 100 beam-time compared to E15^{1st}