K1.8/K1.8BR status and plan

14th J-PARC PAC Meeting 2012 March 16 T.Takahashi (KEK)

- 1. Summary of the Achievements in RUN40
- 2. Run plan by Summer
 - E15 at K1.8BR
 - E27 and Other Studies at K1.8

Achievements in RUN40 (Summary)

 E19 2nd step Run at 2.0 GeV/c was completed. [K1.8]
 8.7 × 10¹⁰ π⁻ on Liq-H₂ with 1.7M/spill beam (7.8 × 10¹⁰, 1.1M/spill at 1.92GeV/c in 2010 RUN)

- K⁻ beam tuning @1.8 GeV/c & measurement [K1.8]
 - > 48.1k/spill@3.3kW,Pt ⇔ 44.1k/spill by TURTLE & S.W.
- *K⁻* beam tuning @1.0 GeV/c for E15 [K1.8BR]

> 33k/spill@3.3kW (K/ALL=0.33)

- CDS commissioning with ⁴He target for E15 [K1.8BR]
 - $> \sim 6 \times 10^8 \, \text{K}^-$ on target, $\sim 20 \text{M}$ events were recorded
- Range Counter for E27 had been installed. [K1.8]

> E27 is ready to run 1st step RUN

E19 2nd step RUN [K1.8]

bcin tracking efficiency [%]¹⁰⁰ ₩ 90 80 70 60 low intensity beam 50 40 30 ^[] 2.4 2.42 2.46 2.48 2.44 2.5 2.52 HV [kV]

Thanks to -

the improvement of duty factor: 13.7%→17.6% optimization of the operation voltage of MWPC 2.51kV→2.47kV

> We could use **1.7M/spill** beam instead of the previous 1.1M/spill by keeping the same hit multiplicity and track-finding efficiency (~95%) as RUN37.

△M=1.87MeV/c²(FWHM) ⇔ 1.86MeV/c²(FWHM) 1st step RUN

E19 1st step results

Search for the Θ^+ pentaquark via the $\pi^- p \to K^- X$ reaction at 1.92 GeV/c

K. Shirotori,¹ T. N. Takahashi,² S. Adachi,³ M. Agnello,⁴ S. Ajimura,⁵ K. Aoki,⁶ H. C. Bang,⁷ B. Bassalleck E. Botta,⁹ S. Bufalino,⁹ N. Chiga,¹ P. Evtoukhovitch,¹⁰ A. Feliciello,¹¹ H. Fujioka,³ F. Hiruma,¹ R. Honda,¹ K. Hosomi,¹ Y. Ichikawa,³ M. Ieiri,⁶ Y. Igarashi,⁶ K. Imai,¹² N. Ishibashi,¹³ S. Ishimoto,⁶ K. Itahashi,¹⁴ R. Iwasaki,⁶ C. W. Joo,⁷ M. J. Kim,⁷ S. J. Kim,⁷ R. Kiuchi,⁷ T. Koike,¹ Y. Komatsu,² V. V. Kulikov,¹⁵ S. Marcello,⁹ S. Masumoto,² K. Matsuoka,¹³ K. Miwa,¹ M. Moritsu,³ T. Nagae,³ M. Naruki,⁶ M. Niiyama,³ H. Noumi,¹⁶ K. Ozawa,⁶ N. Saito,⁶ A. Sakaguchi,¹³ H. Sako,¹² V. Samoilov,¹⁰ M. Sato,¹ S. Sato,¹² Y. Sato,⁶ S. Sawada,⁶ M. Sekimoto,⁶ H. Sugimura,³ S. Suzuki,⁶ H. Takahashi,⁶ T. Takahashi,⁶ H. Tamura,¹ T. Tanaka,¹³ K. Tanida,^{7,12} A. O. Tokiyasu,³ N. Tomida,³ Z. Tsamalaidze,¹⁰ M. Ukai,¹ K. Yagi,¹ T. O. Yamamoto,¹ S. B. Yang,⁷ Y. Yonemoto,¹ C. J. Yoon,⁷ and K. Yoshida¹³ ¹Department of Physics, Tohoku University, Sendai 980-8578, Japan* ²Department of Physics, University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan ³Department of Physics, Kuoto University, Kuoto 606-8502, Japan ⁴Dipartimento di Fisica, Politecnico di Torino, I-10129 Torino, Italy ⁸Research Center for Nuclear Physics (RCNP), 10-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan ⁶Institute of Particle and Nuclear Studies (IPNS). High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan ⁷ Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea ⁸Department of Physics and Astronomy, University of New Mexico, New Mexico 87131-0001, USA ⁹Dipartimento di Fisica, Università di Torino, I-10125 Torino, Italy ¹⁰ Joint Institute for Nuclear Research, Dubna, Moscow Region 141980, Russia ¹¹INFN, Istituto Nazionale di Fisica Nucleare, Sez. di Torino, I-10125 Torino, Italy ¹²Advanced Science Research Center (ASRC), Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195, Japan ¹³Department of Physics, Osaka University, Toyonaka 560-0043, Japan ¹⁴RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan ¹⁵ITEP. Institute of Theoretical and Experimental Physics. Moscow 117218, Russia ¹⁶Research Center for Nuclear Physics (RCNP), 10-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan

The Θ^+ pentaquark baryon was searched for via the $\pi^- p \to K^- X$ reaction in a missing-mass resolution of 1.4 MeV/ c^2 (FWHM) at J-PARC. π^- meson beams were incident on the liquid hydrogen target with the beam momentum of 1.92 GeV/c. No peak structure corresponding to the Θ^+ mass was observed. The upper limit of the production cross section averaged over the scattering angle of 2° to 15° in the laboratory frame was obtained to be 0.26 μ b/sr in the mass region of 1.51–1.55 GeV/ c^2 . The upper limit of the Θ^+ decay width using the effective Lagrangian approach was obtained to be 0.72 MeV/ c^2 and 3.1 MeV/ c^2 for $J_{\Theta}^{P} = 1/2^+$ and $J_{\Theta}^{P} = 1/2^-$, respectively.

subimitted to arXiv (appeared on Mar. 19) will be submitted to PRL soon

FIG. 2. The missing mass spectrum and the background shape for the $\pi^- p \rightarrow K^- X$ reaction at the beam momentum of 1.92 GeV/c. The black points with error bars are the experimental data. The contribution of the simulated background is indicated by red histogram.

Kaon Intensity at K1.8BL K⁻ at 1.8GeV/c 3.3kW

ESS1 = $\pm 250 \text{ kV}$, ESS2 = $\pm 200 \text{ kV}$ IFH = $\pm 130 \text{ mm}$ IFV =-1.0 mm / +3.0 mm , MOM = $\pm 180 \text{ mm}$

CM's scan at MS1= \pm 1.17mm, MS2= \pm 1.25mm

RUN Plan at K1.8BR -E15-

E15: KN Interaction Study by Nuclear Bound-States

Preliminary Results of Run#40

• 1.0 GeV/c beam tuning was completed!

Preliminary Results of Run#40 (Cont'd)

CDS and Liquid Helium target system successfully worked!

Preparation Status

Beam Sweeping Magnet

will be transferred to J-PARC and installed in May 2012

Neutron Counter

- ✓ transfer from KEK to J-PARC was completed.
- ✓ all components (counter, readout, cable, etc.) have been ready

will be installed in April 2012

Schedule for E15

2012.3	14 th PAC			
2012.3-4	Preparation	Neutron Counter: INSTALLATION @ J-PARC		
2012.5	Preparation	Beam-Sweeping Magnet : TRANSFER, KEK ->J-PARC & INSTALLATION @ J-PARC		
2012 6	Engineering	5-10kW, 1week: trigger/detector tuning		
2012.0	Run	5-10kW, 1week: data taking		
2012.7	15 th PAC			
2012.7-9	Shutdown			
2012.10-	Production	<u>10kW, 3weeks</u> : ³ He(K ⁻ ,n/p)		

RUN Plan at K1.8 — E27 & other studies—

E27: Search for "K⁻pp" bound state in the d(π^+ ,K⁺)X reaction

• "K⁻pp" is produced through Λ^* doorway in the d(π^+ ,K⁺) reaction

- Semi-exclusive measurement by Range Counter Array (RCA) in order to suppress quasi-free B.G.
 - $K^-pp \rightarrow \Lambda p_1, \Lambda \rightarrow p_2 \pi^-$
 - $K^-pp \rightarrow \Sigma^0 p_1, \Sigma^0 \rightarrow (\Lambda \gamma) \rightarrow p_2 \pi^- \gamma$
 - $\quad \pi^+ d \to \Lambda^* \text{ K}^* \text{ } \text{p}_{\text{1s'}} \Lambda^* \to \Sigma \text{ } \pi \text{, } \Sigma^+ \to \text{p}_{\text{2}} \text{ } \pi^0$
- Original Proposal: 5M/spill beam
 - $6x10^4 \Lambda^*$ /day

Assuming 1% trapping probability

- 600 bound states/day (inclusive)
- ~300 events/40 days (exclusive) with ϵ_{RCA} ~14% for two protons

Handling with high-rate beam

Possible to use 3 M/spill beam in the next run.

E27: The first step Goal

 $3M \pi^+/spill$

- Inclusive d(π⁺,K⁺)X spectrum @2.2 < Mx < 2.5GeV/c².
 - The first measurement of this reaction and this missing mass region. $\rightarrow 5.1^*10^5 \Lambda(1405)$'s @10 days
 - →To evaluate the maximum value of the cross section, and to understand the background shapes.
 - $p(\pi^+, K^+)X$ for one day

 \rightarrow contribution of "p" in "d"

- Check the feasibility of coincidence measurement
 - One proton tag/Two proton tag

E27: Expected inclusive spectrum (Background Processes)

 P_{π} =1.7GeV/c, SKS=350A

10 days with 3M/spill beam

E27: Expected B.G. spectrum with one proton tag

 $-\pi^+$ "n" $\rightarrow \Sigma^0$ K⁺

P_π=1.7GeV/c, SKS=350A

(we assume background free for two proton tag)

Near Future (2012.10—) Plan at K1.8

Following Exp. become inside the scope to be carried out.

- E13 1st step: ${}^{4}_{\Lambda}$ He 10 days with 10kW ${}^{19}_{\Lambda}$ F 20 days with 10kW
- E10 ⁶_ΛH via the ⁶Li(π⁻,K⁺) (part.1)
 21 days with 3M/spill beam
 100 counts for 10nb/sr (assumed)
 with 3.5g/cm² target

Spectrometer resolution check by observing ${}^{\bf 12}{}_{\Lambda}{\bf C}$ Kaon beam study

Summary

Run Plan by Summer (K1.8/K1.8BR)

E15 Commissioning & Engineering Run [K1.8BR] ~2 weeks					
> neutron-counter commission	IWEEK				
Engineering RUN with full setup	1 week				
E27 1 st step Run with 3M/spill beam [K1.8]	~2 weeks				
Commissioning & Calibration	2—3 days				
► H(π ⁺ ,K ⁺)	1 day				
$\succ D(\pi^+, K^+)$	10 davs				
Beam line & SKS study for future [K1.8]					
Resolution check by ${}^{12}C(\pi^+ K^+){}^{12}C$	1 day				
$= \operatorname{Resolution check by } \operatorname{C}(\mathcal{H},\mathcal{K}) \xrightarrow{\Lambda} \operatorname{C}$	I Udy				
Kaon beam tuning & measurement	1 day				

10kW User Beam Operation is requested !

International Conference on Hypernuclear and Strange Particle Physics

First Circular

The 11th International Conference on Hypernuclear and Strange Particle Physics (HYP2012) will take place in Barcelona (Spain) from Monday October 1st through Friday October 5th 2012.

The HYP conference brings together theoreticians and experimentalists working on the physics of hadron processes and bound nuclear systems containing strangeness. This area of research covers a broad variety of topics, including the physics of Λ hypernuclei, multistrange systems, kaonic nuclear clusters and the role of strangeness in extreme forms of matter. Over the years, the conference has always been open to including new and challenging problems, extending its frontiers to emerging subfields in nuclear and particle physics.

This will be the eleventh in the series of conferences, held periodically every three years, following the successful HYP-X of Tokai (Japan) in 2009. The HYP2012 conference will include plenary and contributed talks, as well as poster sessions, all of them taking place in the main auditorium and auxiliary rooms of the Cosmocaixa, Science Museum of Barcelona. The location will allow visitors to combine the joy of physics with the broad cultural and artistic offer of the city, the magnificent architectural heritage of Gaudí, as well as the pleasant mediterranean weather and food.

We would like to show **a lot of results from J-PARC**, not only E19 but also other experiments, at this conference

backups

Impact of June RUN Setup change time estimate

- Setup for E27 (Liq.Target & Range Counter) and E13 (Hyperball-J) is conflict.
 - E27 -> E10 a few days
 - E27 -> E13 3 months or more
 - to install HBJ and test it
- HBJ installation during Summer S.D.
 - if E27 is completed.
 - E10 <-> E13 if HBJ is pre-installed and tested, 1month to change SKS downstream detector configuration

Beamline Fiber Tracker

Momentum Reconstruction at Beam Spectrometer

5 parameters (X,Y,X',Y', δ) should be determined.

 X_{out} , Y_{out} , X'_{out} , Y'_{out} from downstream tracker

X_{in} from BFT

should select single hit by tight time gate

E10: n-rich Λ hypernuclei (${}^{6}_{\Lambda}$ H and ${}^{9}_{\Lambda}$ He)

FINUDA: 3 candidates for ⁶ M. Agnello et al, PRL 108 (2012) 042501

T _{tot} (MeV)	р(π ⁺) (MeV/c)	р(<i>n</i> ⁻) (MeV/c)	M (MeV)	B ⁵ (MeV)	B_{Λ}^{3} (MeV)	M (MeV)	B^{5}_{Λ} (MeV)	B ³ _A (MeV)
202.5	251.3	135.1	5802.33	3.11	1.41	5801.41	4.03	2.33
202.7	250.0	136.9	5803.45	1.99	0.29	5802.73	2.71	1.01
202.1	253.8	131.2	5799.97	5.47	3.77	5798.66	6.78	5.08

 $K^- + {}^{6}Li \rightarrow {}^{6}_{\Lambda}H + \pi^+ \qquad {}^{6}_{\Lambda}H \rightarrow {}^{6}He + \pi^-$

Table 1: Kinematic features, ${}_{\Lambda}^{6}$ H mass, M, and binding energy with respect to (Λ + 5 H), B_{Λ}^{5} , and (Λ + 3 H + 2n), B_{Λ}^{3} , from production (col. 4, 5, 6) and decay (col. 7, 8, 9) reactions of the three ${}_{\Lambda}^{6}$ H candidate events. $T_{tot} = T(\pi^{+})+T(\pi^{-})$. The errors are $\sigma(T_{tot})=1.3$ MeV, $\sigma(p_{\pi^{+}})=1.1$ MeV/c, $\sigma(p_{\pi^{-}})=1.2$ MeV/c, $\sigma(M)=\sigma(B_{\Lambda})=0.96$ MeV for production reaction, =0.84 MeV for decay reaction.

Important to confirm the existence of ${}^{6}_{\Lambda}$ H !

Yield Estimate

11nb/sr (¹⁰_ALi, KEK-PS E521)
3.5g/cm² target
3M/spill beam

2012 Autumn after

improvement of duty factor introduction of high-rate detectors

Check of the resolution for SksMinus' by ${}^{12}C(\pi^+, K^+){}^{12}{}_{\Lambda}C$ reaction (1 day)

E19 1st step Results

- U.L. of dif. C.S. 0.26 μ b/sr [2° -15°]
- U.L. of total C.S. and Width
 - using Effective Lagrangian model by Hyodo
 - only pole-terms (s- and u- channel)
 - only E19 data
 - $\frac{1}{2}$ + case: 0.21 µb \Rightarrow 0.72 MeV (PV,Fc)
 - $\frac{1}{2}$ case: 0.31 µb \Rightarrow 3.1 MeV (PS,Fc)
 - combined with E559 data
 - $\frac{1}{2}$ + case: 0.21 µb \Rightarrow 0.41 MeV (PV,Fs)
 - $\frac{1}{2}$ case: 0.31 µb \Rightarrow 1.7 MeV (PS, Fs)

E19 Theoretical Predictions

 $σ_{tot}$ of the π-p → K-Θ+reaction at Plab ~ 1920 MeV and the K+p → π+Θ+ reaction at Plab ~ 1200 MeV. All the numbers are given in units of ΓΘ/(1 MeV) [μb]

		π -p \rightarrow K-	Θ+	K+p → $π$ + $Θ$ +	
J ^p	F.F.	PS	PV	PS	PV
J ^P = 1/2 ⁺	Fs	9.2	0.51	119	9.6
	Fc	5.3	0.29	595	46
J ^P = 1/2 ⁻	Fs	0.18	0.40	1.9	4.2
	Fc	0.10	0.23	9.6	20
$J^{P}=3/2^{+}$	Fs		10		94
	Fc		5.9		478
J ^P = 3/2 ⁻	Fs		5.5		8572
	Fc		3.2		40544

T. Hyodo et al., arXiv:1203.0598 [nucl-th]