Staging strategy of E15

M. Iwasaki

RIKEN Nishina Center & TITech

for J-PARC E15 Collaboration

E15: KN interaction study by nuclear bound state

motivated by

1) Production cross section can be as large as few mb/sr in bound region!

T. Koike, T. Harada, Phys. Rev. C80, 055208 (2009)

2) DISTO DATA

T. Yamazaki, M. Maggiora, P. Kienle, et al, PRL 104, 132502 (2010)

3) Background Study

Production cross section (KH)

³He (K⁻, n) X @ 1 GeV/c Excluding K⁻ escape process T. Koike, T. Harada, Phys. Rev. C80, 055208 (2009)

KH vs DISTO

simulated by T. Hiraiwa

Λpn event distribution on Phase Space

CDS & NC Acceptance

Two Nucleon Reaction and FSI (Σ-Λ conversion) *multi-step PWIA*

Two Nucleon Reaction and FSI (Σ-Λ conversion) multi-step PWIA

Two Nucleon Reaction and FSI (Σ-Λ conversion) multi-step PWIA

Two Nucleon Reaction and FSI (Σ-Λ conversion) multi-step PWIA

Two Nucleon Reaction and FSI (Σ-Λ conversion) multi-step PWIA

2011年1月17日月曜日

simulated by T. Hiraiwa

NISHINA

in in-flight kinematics @ 1GeV/c

Not very likely... cf. De Broglie wave length @ 1 GeV/c ~ 1.2 fm Λ Nucleon distance ~ 1.5 fm although 2NR process should be examined on Two successive reaction after KNN 1) nucleon or hyperon scattering 2) $\Sigma \rightarrow \Lambda$ conversion by reducing the trigger level.

Note: Simple KNN channel excluded: Because it is easy to discriminate

apparatus preparation is ready E15 approved = 1500kW*week (@ Pt equiv.) not easy to realize

divide into 3 periods E15^{1st} ~ 30kW*week (2% in terms of No. proton on target)

- 1) to know the background processes
- 2) to evaluate the realistic beam time for E15^{full}
- 3) present an information of the \overline{KN} interaction ³He(K-n) spectrum below \overline{KN} threshold
 - ³He(K⁻, n) spectrum below \overline{KN} threshold
- 4) a hint of signal in $\Lambda + p + n$ final states

E15^{1st} realize before long shutdown in 2012

J-PARC E15 Collaboration

http://ag.riken.jp/J-PARC/collaboration/

S. Ajimura^a, G. Beer^b, H. Bhang^c, M. Bragadireanu^e, P. Buehler^f, L. Busso^{g,h}, M. Cargnelli^f, S. Choi^c, C. Curceanu^d, S. Enomotoⁱ, D. Faso^{g,h}, H. Fujioka^j, Y. Fujiwara^k, T. Fukuda^l, C. Guaraldo^d, T. Hashimoto^k, R. S. Hayano^k, T. Hiraiwa^j, M. lioⁿ, M. Iliescu^d, K. Inoueⁱ, Y. Ishiguro^j, T. Ishikawa^k, S. Ishimoto^o, T. Ishiwatari^f, K. Itahashiⁿ, M. Iwai^o, M. Iwasaki^{m,n}, P. Kienle^p, H. Kou^m, J. Marton^f, Y. Matsuda^q, Y. Mizoi^l, O. Morra^g, T. Nagae^j, H. Noumi^a, H. Ohnishiⁿ, S. Okada^d, H. Outaⁿ, D. Pietreanu^d, M. Poli Lener^d, A. Romero Vidal^d, Y. Sada^j, A. Sakaguchiⁱ, F. Sakumaⁿ, M. Sato^k, M. Sekimoto^o, H. Shi^k, D. Sirghi^{d,e}, F. Sirghi^{d,e}, K. Suzuki^f, S. Suzuki^o, T. Suzuki^k, H. Tatsuno^k, M. Tokuda^m, D. Tomonoⁿ, A. Toyoda^o, K. Tsukadaⁿ, O. Vazquez Doce^d, E. Widmann^f, T. Yamazaki^{k,n}, H. Yim^r, and J. Zmeskal^f

(a) Research Center for Nuclear Physics (RCNP), Osaka University, Osaka, 567-0047, Japan 💌

- (b) Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6, Canada 🛃
- (c) Department of Physics, Seoul National University, Seoul, 151-742, South Korea 📧
- (d) Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy 🚺
- (e) National Institute of Physics and Nuclear Engineering IFIN HH, Romania 💴
- (f) Stefan-Meyer-Institut für subatomare Physik, A-1090 Vienna, Austria 💳
- (g) INFN Sezione di Torino, Torino, Italy 🚺
- (h) Dipartimento di Fisica Generale, Universita' di Torino, Torino, Italy 🔲
- (i) Department of Physics, Osaka University, Osaka, 560-0043, Japan 💌
- (j) Department of Physics, Kyoto University, Kyoto, 606-8502, Japan 💽
- (k) Department of Physics, The University of Tokyo, Tokyo, 113-0033, Japan 💌
- (I) Laboratory of Physics, Osaka Electro-Communication University, Osaka, 572-8530, Japan 💌
- (m) Department of Physics, Tokyo Institute of Technology, Tokyo, 152-8551, Japan 💌
- (n) RIKEN Nishina Center, RIKEN, Saitama, 351-0198, Japan 💌
- (o) High Energy Accelerator Research Organization (KEK), Ibaraki, 305-0801, Japan 💽
- (p) Technische Universiät München, D-85748, Garching, Germany 💳
- (q) Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan 💌
- (r) Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 139-706, South Korea 📧

(*) Spokesperson

Thank you for attention!

KI.8BR with Pt (@50% loss)

All K incident experiments: Present Duty Factor will be OK up to few 10th of kW

required power

E17 ~ 10kW*week > 2kW? KN by x-ray via K⁻ ³He

E15^{1st} ~ 30kW∗week (first stage) > 10kW? cf. 1500kW∗week (E15 full @ Pt equiv.) > 100kW? KN by bound state via K⁻³He

E31 ~ 180kW*week Λ(1405) via K⁻ d

>20~40kW?

Signal can be easily discriminated from signal in both FSI cases !

Two successive reaction after KNN

1) nucleon or hyperon scattering 2) $\Sigma \rightarrow \Lambda$ conversion

Note: Simple KNN channel excluded: Because it is easy to discriminate

simulated by T. Hiraiwa

simulated by T. Hiraiwa

Summary of the beam time requirement of the E15 first-stage run

Beamline: K1.8BR Primary beam: ~ 10 kW proton Secondary beam : 1.0 GeV/c K⁻ Reaction : In-flight (K⁻,n) Target : Liquid ³He Primary beam : integrated proton of 30 kW-week Duration : more than three weeks including beam tuning for 1 GeV/c kaon

simulated by T. Hiraiwa

Background? vs signal (ratio arbitrary)

simulated by T. Hiraiwa

Estimated yield by one proton missing

- Yield = $N_{kaon} \times t \times d\sigma/d\Omega_{(\theta=0)} \times r \times R \times A \times e \times \varepsilon$
- $-N_{kaon}$: kaon per spill \rightarrow 300k/spill (30 kW operation)
- -*t* : target → 0.08 [g/cm³] / 3 [g/mol] x 6.02 x 10²³ [mol⁻¹] x 9.3 [cm] ~ **1.4 x 10²³ [cm⁻²]**
- $-d\sigma/d\Omega$ (@ $\theta = 0$) \rightarrow 3 [mb/sr]

PLB 652(2007)262-268 PR C 80,055208(2009)

- -r: branching ratio ($\Lambda \rightarrow \pi^{-}p$) $\rightarrow 0.63$
- $-\mathbf{R}$: "Kpp" decay branch $\rightarrow \mathbf{Br}(\Lambda \mathbf{p}) + \mathbf{Br}(\Sigma^{0}\mathbf{p}) \sim \mathbf{1}$
- -A : NC acceptance → 12 [msr]
- -*e* : NC efficiency → 0.3
- $-\epsilon$: overall efficiency (trigger, detector, ana., etc) \rightarrow 0.7
- 2.1 x 10⁴ signals on missing mass spectrum (by 1 week run) (Λp + Σ⁰p branch)