E17 Status

- 0. About E17
- 1. Readiness of x-ray detectors and ³He target
- 2. Status of beam tuning at K1.8BR
- 3. Beam requirements
- 4. Near-future schedule
- 5. Summary

Takatoshi Suzuki (Univ. of Tokyo) for J-PARC E17 collaboration

J-PARC E17 collaboration

H. Bhang¹, M. Cargnelli², S. Choi¹, C. Curceanu³, O. V. Doce³, S. Enomoto⁴, H. Fujioka⁵, Y. Fujiwara⁶, C. Guaraldo³, **T. Hashimoto⁶**, **R. S. Hayano⁶**, T. Hiraiwa⁵, M. Iio⁷, S. Ishimoto⁸, T. Ishiwatari², K. Itahashi⁷, M. Iwasaki^{7,9}, H.Kou⁹, P. Kienle^{2,10}, J. Marton², Y. Matsuda⁶, H. Noumi⁴, H. Ohnishi⁷, S. Okada³, H. Outa⁷, F. Sakuma⁷, Y. Sada⁵, M. Sato⁶, M. Sekimoto⁸, H. Shi⁶, D. Sirghi³, F. Sirghi³, T. Suzuki⁶, K. Tanida¹, H. Tatsuno⁶, M. Tokuda⁹, D. Tomono⁷, A. Toyoda⁸, K. Tsukada⁷, A. R. Vidal³, E. Widmann², B. Wunschek², T. Yamazaki^{6, 7}, J. Zmeskal²

SNU¹, SMI², LNF³, RCNP⁴, Kyoto Univ.⁵, Univ. of Tokyo⁶, RIKEN⁷, KEK/J-PARC⁸, Tokyo Tech⁹, Tech. Munich Univ.¹⁰

E17:Strong-interaction Shift and Width of Kaonic Helium 3

E17 Setup

Beamline / Beam	K1.8BR / K ⁻ (p _K >0.7 GeV/c, discussed later)
Target	Liquid ³ He
X-ray detector	Silicon Drift Detector (SDD)
Secondary particle detector	E15 Cylindrical Drift-chamber System (CDS)

Silicon Drift Detector (SDD) Status

Spectrum w/ fluorescence X-rays

- SDD installed in the 3He cryostat
 - Successfully operated 4 SDDs with preamp inside vacuum
 - Cross-talk suppressed

SDD Systematic Study @ Test Bench

To achieve <2eV absolute energy accuracy at 6.2 keV....

- Optimal temperature/voltage (SDD, preamp.)
 - Energy resolution
 - Time resolution

Pileup rejection

- **D** Online: optimization of VETO time after "Reset" & large signals
- D Offline: Flash ADC (in preparation), pre-gate, tail charge

Incident-angle

- Some parts of response function depend on incident-angle
- □ But, the peak position changes at most 0.5 eV

Overall systematic uncertainty is controlled to be 1~2 eV.

5000

6000

4000

7000

8000

X-ray Energy (eV)

9000

Liquid ³He Target System

Date: Apr. 2010	J-PARC E15
mperature in the Target Cell	1. 3 K
Pressure in the Target Cell	42 mbar
Liq. ⁴ He Consumption	45 L/day
Heat Load to the 1K Parts	0. 18 W

Date: June. 2010	J-PARC E17	KEK E570	
Femperature in the Target Cell	1. 4 K	1.5 K	Heat load
Liq. ^₄ He Consumption	65 L/day	120 L/day	problem was
Heat Load to the 1K Parts	0. 26 W	0.48 W	annost solved

Beam Tuning : Setup (0.7~0.9 GeV/c)

p (β=0.624)

×

×

5

×

Beam Tuning: Pt VS. Ni targets

For K[±], Pt is better than Ni for both of K/all ratio and yield per primary proton.

Beam Tuning: Slit Openings VS K[±] Yield

Mes.1 (IFH Slit Opening at IFV=+-2mm, MOM=+-180mm, and MS1=+-2.35mm

Mes. 3, 4 (Yields vs MS1 Opening for 2 IFV Opening, at IFH=+-130mm and MOM=+-180mm)

MOM Slit Opening in half(mm)

Mes.5,6 (Yield vs IFV Slit Opening for 2 MS1 Opening, at IFH=+-130mm and MOM=+-180mm)

Beam Tuning: Kick-angle VS K[±]/pbar Yield

1. Acceptance saturates at ~20 mrad.

2. $\theta_{K/p}-\theta_{\pi}$ difference should be 3 mrad or larger for safe K/p- π /e separation \rightarrow Vertical displacement of K/p- π at MS1 should be > 12.5 mm for MS1 2W(±4.7mm) setting.

Beam Tuning: Comparison of Momentum Dependence Calculated VS Measured

Calculation:

- 1. Sanford-Wang formula
- 2. Kinematic reflection w./w.o.
- 3. Decay factor : exp(-L/βγcτ) L=30.7m (T1->B1,31.1-0.4)
- 4. Kick angle (for V=±200 kV, measured acc.)
- ✓ Real data is in between 2 models.
- \checkmark For K⁻, simple SW gives better description.
- ✓ Higher momentum is optimum for E17.

Beam Tuning: Improvement of K[±] yields

Kaon yield / 1.25 10¹² ppp ≅ 560 SEC Ni, "1 kW" for 30 GeV, 0.167 Hz operation Vertical : 2W, Horizontal :full open Statistical error only

Setting	K+ (kilo/pill)	K ⁻ (kilo/spill)		
0	2.00±0.03	0.597±0.015		
1	1.98±0.02	0.547±0.008		
2	2.73±0.02	0.790±0.023		
3	2.80±0.02	-		
4	2.84±0.02	-		
5	3.61±0.07	-		
6	3.63±0.07	1.30±0.06		
7	4.26±0.09	-		
8	4.26±0.07	1.50±0.06		

Beam Tuning: Recommended ES1 Voltage

- 1. $\theta_{K/p}$ < 20 mrad (max acceptance)
- 2. $\theta_{K/p}$ - θ_{π} > 3 mrad (K/p- π /e separation)

Incompatible at and above 0.80 GeV/c for K. Condition 2 define the angle and K-vield, and acceptance loss is unavoidable there.

✓ Present operational limit of ±200 kV stands for only up to ~0.9 GeV/c.

-> Operational limit should be enlarged up to ±320 kV for 1.1 GeV (Max. Mom.) operation.

Beam Tuning : Expected Kaon Yields

Kaon yield / 1.25 10¹² ppp ≅ 560 SEC
Pt,"1 kW" for 30 GeV, 0.167 Hz operation
Vertical :2W, Horizontal :full open
Recommended ES1 voltage
Statistical error only

Momentum (GeV/c)	K ⁺ (kilo/spill)	K ⁻ (kilo/spill)
0.70 (default) (optimum)	4.56±0.12 5.36±0.13	1.54±0.09 1.78±0.10
0.75	7.85±0.18 9.22±0.19	2.38±0.13 2.75±0.14
0.80	11.98±0.27 14.07±0.28	3.79±0.21 4.38±0.22
0.85	16.83±0.37 19.78±0.39	5.83±0.32 6.72±0.34
0.90	23.73±0.53 27.89±0.57	8.50±0.48 9.81±0.51

Input for optimum momentum decision.

Current Status of CDS

- All of the components(CDC, CDH) have been installed into the solenoid magnet.
- Efficiency of CDC was measured using 90Sr source
 Efficiency of >00% was achieved for all
- -> Efficiency of >99% was achieved for all layers
- 2. Excitation test of Solenoid Magnet have been performed in May 2010
- -> Design value (max field : 0.7T) was successfully achieved
- 3. We've got CDS Commissioning data with 0.5 T magnetic field. Now ,analysis are under way.

Near-Future Schedule (E17-related part)

Beam measurements in this autumn

Oct. ~ Nov. beam time will be devoted to the further beamline commissioning and detector tuning.

Beamline

✓ Further Kaon tuning

✓ Beam momentum analyze by D5

✓ Range measurement to optimize stopped K⁻ number
CDS

✓ (in-flight π^+ , p) run

✓ (in-flight π^+ , p) run with CDS field (E15)

✓ (in-flight K⁻ , K⁰_S/ Λ) run with CDS filed (E15)

SDD

✓ Check of the calibration peaks (yield, S/N ratio, trigger)

✓ Rate dependence (response function, live time rate, etc.)

We will be ready to start the physics run by the end of the year 2010.

Beam Requirements (for Physics Run)

Expected L_{α} x-ray yield, in comparison with KEK E570 result (dashed quantities) :

In order to achieve $\Delta E_{stat} \approx 2 \text{ eV}$ (E17 proposal) $Y(3d->2p)\approx Y'(3d->2p)\approx 2\times 10^3 \text{ events} (\Delta E_{stat} \sim \sigma_{E=6.2 \text{ keV}}/Y^{1/2})$ $N_{stop K} = N'_{stop K}/15.4 \sim 6\times 10^6 (N'_{stop K} \sim 90M)$ K⁻ beam intensity@750 MeV/c = 1.5 k /spill (1kW - 0.167Hz, Ni) Stopping Efficiency of K⁻: 0.4%-> Number of stopped K⁻ \approx 6 /spill. => Required spill number: $6\times 10^6/6 = 1\times 10^6$ (208 shifts \sim 10 weeks)

We require 10 kW•week to achieve the precision goal.

Summary

Preparation status -

- ✓ R&D of SDD at KEK is finished, and possible sources of systematic errors are investigated well. Systematic error for the x-ray energy is now controlled to be 1~2 eV.
- ✓ ³He target is operatable under "E17" mode, and ready for moving to J-PARC together with SDD.
- ✓ K1.8BR Kaon tuning is proceeding rapidly. Pt target is superior than Ni in all aspects. Kaon yield at 0.75 GeV/c agree with calc., but more steeply increase with momentum than expectation. Beamline momentum for physics run may be enlarged from 0.75 GeV/c.

Beam usage of this autumn -

- ✓ Beamline : momentum analyze by D5 / Optimization of stop K^- .
- ✓ CDS : Beam calibration.
- ✓ SDD : Confirmation of calibration peaks / Rate study.
- After these measurements, we will be ready to start physics run.

Beam requests

- ✓ We require **10** kW•week to achieve the statistical uncertainty of 2 eV. with Ni.
- ✓ We requests the usage of Pt, with which higher K/others ratio is realized and integrated primary beam intensity is 1.8~1.9 times reduced.

Beam Tuning : Settings

Ni target / 30 GeV, 0.167 Hz, 1 kW (1.6 kW only for set 7) / 0.75 GeV/c

Set	Run (+/-)	ES1 (±kV)	CM(A) (+/-)	D5(A)	Q5/Q6 (A)	Acryl plates	Sub. coil short	B1	IF-V center (mm)	M.S. center (mm)
1	972/1001	200	349/354	1230	311/400	on	off	on	1.8	0.2
2	982/991	100	175/178	1230	311/400	on	off	on	1.8	0.2
3	1067/-	100	175/-	1230	311/400	on	on	on	1.8	0.2
4	1071/-	100	175/-	1217.7	311/400	on	on	on	1.8	0.2
5	1074/-	100	173/-	1217.7	311/400	on	on	off	1.8	0.3
6	1136/1149	100	173/177	1217.7	311/400	off	on	off	1.8	0.3
7	1079/-	100	173/-	1217.7	342/480	on	on	off	1.8	0.3
8	1138/1150	100	173/177	1217.7	342/480	off	on	off	1.8	0.3
0	947/928	200	351/355	1230	311/400	on	off	on	2.0	0.0

✓ IF-H/Mom. slit full open, Vertical slits are opened twice the designed value.

✓ Set 0 is with similar condition to set 1, but from Run#29.

X ray energy (keV)