「J-PARCハドロン物理(*)の将来研究計画を考える」研究会 2008.9.1-2 於 理研 超高強度2次ビームで展開する精密ストレンジネス核分光 野海博之,大阪大学 核物理研究センター

ストレンジネス(フレーバー) 核物理の取り組み

Q: "核力"についてSU_F(3)の枠組みで理解できるかとくに、バリオン間相互作用の*短距離部分*の解明 クォーク自由度の重要性

Q: "核物質"についての理解はどこまで深まるか

とくに, *高密度核物質*の性質の解明

中性子星はハイペロン星か?

クォーク星、ストレンジクォーク物質は存在するか?

Q:核媒質中でハドロンの性質はどのように変化するのか

カイラル対称性の(部分的)回復との関係 クォークの凝縮のなぞにせまれるか

J-PARCでは、

K中間子ビームを用いたS=-2核の研究

を錦の御旗にして関連する研究とともに推進

K1.8とK1.8BR(K1.1) ~10⁷ Hz のKビーム

<u> Oストレンジネス核分光実験はビーム強度の計数限界(~107 Hz)を</u> <u>迎えている。</u>

この限界を超え、ストレンジネス核分光研究に質的な変化をもたらす
(期待)

OJ-PARCはこの限界を超えるビーム強度を供給できる。

by Sanford-Wang

Momentum (GeV/c)

coherent $\Lambda \rightarrow \Sigma$ w/o exciting N (b)~(d)... <u>No effect in T=0</u>

中性子過剰ハイパー核構造

→ 味村

1/1000の生成率(DCX/NCX)

<u>高効率(>100倍)、かつ、高分解能(<1MeV)が求められる。</u>

✓ Σ 核ポテンシャルの詳細

斥力の大きさ? LSポテンシャルの大きさ? 周辺部の形状?(Σ⁻原子軌道)

高効率かつ高分解能が必要。

残された課題-2

ハイパー核の弱崩壊機構

非中間子崩壊においても△l=1/2規則は成立しているか。 短距離部分の効果:クォーク交換の寄与はあるのか。

✓ ハイペロン核子弱相互作用のスピンアイソスピン構造:

 $\Delta I=1/2$ 規則が成立すると $\Gamma_p/\Gamma_n ({}^4_\Lambda H)^* \Gamma_p/\Gamma_n ({}^4_\Lambda He)=2\Gamma_p/\Gamma_n ({}^5_\Lambda He)$

✓ π⁺ 弱崩壊: ΔI=3/2振幅に敏感, クォーク過程が関与 (Oka et al.)

Soft pion emission Weak Decay

野心的、挑戦的な課題-1

✓∧ハイパー核の電磁気能率測定

- 核媒質の変化:芯偏極
- 交換電流 (媒質中でのバリオン間相互作用)
 K-ex., ΛΣ coupling effect (Isospin≠0)
- 核媒質中でのハドロンの変化

これらの効果をみるには 数%の精密測定が必要か?

S. Takeuchi et al., NPA481, 639(1988)

K. Saito et al., NPA625, 95-106(1997)

間接的測定 B(M1), H. Tamura et al.

直接的測定

✓ チャームド核

S	⇒	С
Γ		D
Λ		$\Lambda_{\sf c}$
¯KN, Λ(1405)		DN, Λ _c (2595)

cを核媒質中に入れたらどうなるか?

どうやって作り、どうやって同定するか。

Extension of Hadron Hall

Fig. 1: An example of layout plan of High Intensity, High Resolution (HIHR) Beam Line connected to the T2 target in the extended Hadron Experimental Hall.

コメント1

ハイパー核の電磁気能率測定

Electromagnetic Property of Hypernucleus

...provides

more detail/direct information on the dynamics of hadrons in nuclear medium.

The magnetic moment, μ , is described as

 $\mu = \langle \psi^*(m=J) | M_z | \psi(m=J) \rangle$ $M = \int \mathbf{r} \times \mathbf{j}(\mathbf{r}) d\mathbf{r}$

j: represents the *current* distribution (of constituents) in the nucleus

M: magnetic dipole operator, M(M1)

Naive Picture: single-particle orbital motion + Intrinsic spin

 $M(M1) \sim \sum_{i}^{A} (g_{\boldsymbol{\ell}}^{i} \boldsymbol{\ell}_{i} + g_{s}^{i} \boldsymbol{s}_{i})$ *i.e.* Schmidt value

Correction:

- medium modification by implication of Y core polarization
- exchange current (BB interaction in medium) $\Lambda\Sigma$ coupling effect (Isospin \neq 0)
- hadron modification in medium

Approach to the Λ hypernuclear Magnetic Moment:

✓ Indirect measurement → τ , B(M1)

proposed by H. Tamura (Tohoku) et al.

• Doppler Shift Attenuation Method: B(M1)~|<f $|\mu_z|$ i>|²~ $(g_C-g_A)^2$

γ-Weak Coincidence Method:

Approach to the Λ hypernuclear Magnetic Moment:

Direct measurement : precession in Strong Magnetic Field

Hypernuclear Polarization:

 Λ Pol. in (π^+ , K⁺) and (K⁻, π^-)

20

K. Itonaga, T. Motoba and M. Sotona

Phase Shift Analysis by K. Itonaga, T. Motoba, and M. Sotona PTPsuppl.117, 17(1994) Large Polarization is produced via the (π^+, K^+) reaction

Measured Pol. of ${}^{5}_{\Lambda}$ He produced via (π^{+} ,K⁺) on 6 Li

 $W(\theta)=1 + \alpha P_A \cos \theta$, $\alpha = -0.642(13)$

直接測定:時間積分摂動角相関法

⁵_小Heの場合(g~1.2)

 $d\sigma/d\Omega \sim 3 \mu b/sr$, $P_{\Lambda} = 0.8$ at 15 deg. at $p_{\pi} = 1.2 \sim 1.4 \text{ GeV/c}$

```
B_{ext}=10 T (<Bt>~2500 T ps) : \Phi~8°
```

 $Ω_{\rm K}$ ~0.01 sr $ε_{\rm K}$ ~0.7*0.2 $Ω_{\rm decay-\pi}$ ~0.2 (att.f~0.8)

10⁹ Hz のビームで90シフト走って、△g~3%

なのだけれど、、、

decay-πの強磁場による巻きつき問題のうまい解決方法がみつからない 0.1 GeV/c π⁻: 10T の磁場中での軌道半径はわずか3.3cm!

Oコンパクトな標的領域に強磁場を発生できるか

→究極の方法が原子レベルの強磁場(内部磁場)の利用

強磁性体に埋め込まれた原子の偏極が不明

→Transient Fieldの利用

~psオーダーの遷移(E2遷移など)の測定(<Bt>はあまり得しない。)

Οπ⁰を測定する。

→イールドは半分に(精度は1.4倍悪化)。でも、意外と現実的かも。 15

コメント2

チャームド核の生成

Fig. 6. Predictions for the $\bar{p}p \rightarrow \bar{D}D$ annhibition cross section taken from Refs. [54] (solid line) and [55] (dashed and dash-dotted lines).

[54] P. Knoll et al, NPB316, 373(1989)[55] A. B. Kaidalov et al, ZPC63, 517(1994)

Fig. 2. Description of $\bar{p}p \rightarrow \bar{A}A$ and $\bar{p}p \rightarrow K^-K^+$ cross-sections and predictions for $\bar{p}p \rightarrow \bar{A}_c A_c$ and $\bar{p}p \rightarrow \bar{D}^0 D^0$ cross-sections

A.B.Kaidalov, P.E. Volkovitsky, Z. Phys. C63, 517(1994)

20

Fig. 2. Reaction cross section for (a) $D^-n \rightarrow D^-n$ (dashed line), (b) $D^-p \rightarrow D^-p$ (solid line) and (c) $D^-p \rightarrow \overline{D}^0 n$ (dash-dotted line) as a function of the \overline{D} -meson momentum (lower axis) and the kinetic energy ϵ in the center-of-mass system (cms) (upper axis).

Fig. 4. Reaction cross sections for (a) $D^0n \rightarrow D^0n$ (dashed line), (b) $D^0p \rightarrow D^0p$ (solid line) and (c) $D^0p \rightarrow D^+n$ (dash-dotted line) as a function of the \bar{D} -meson momentum (lower axis) and the cms kinetic energy ϵ (upper axis).

Fig. 3. Differential cross sections for the $D^-p \rightarrow D^-p$ reaction in the cm system at different momenta.

Fig. 5. Differential cross sections for the $D^0 p \rightarrow D^0 p$ reaction in the cm system at different momenta.

KNのアナロジーで DNの強い引力!?

hep-ph arXiv: 0803.3752v1 J. Haidenbauer et al.

TOY Model 計算(PWIA)

10nb*0.05*0.006*br(D→Kππ:9%)~0.3pb

D核の崩壊と同定

Full Width= 3.6 MeV !

$$\Lambda_{c}^{+}(2595) \rightarrow \Sigma_{c}^{++} \pi^{-} \rightarrow \Sigma_{c}^{0} \pi^{+} \rightarrow \Lambda_{c}^{+} \pi^{-} \pi^{+} \quad (67\%)$$

 $p_{\pi} = 24 \text{ MeV/c}$

高運動量大強度反陽子弁別ビームライン

□ 欲しいビームラインのスペック:

強度:10⁸Hz、アクセプタンス:20 msr%
 運動量:~7GeV/c(15GeV/c)
 Dispersive at TGT(ビームの運動量分析必要)
 大強度高分解能πビームラインは最初のステップになる。
 Kビームの利用にも応用可能(Ξ核, ΛΛ核の量産化へ)
 長さ:100~200m?(反陽子純度のためには長いほうが有利)

□ どうやって反陽子ビームの純度を上げるか。

RFセパレータ?

TOF(w/ バンチドビーム)?

