

Masaharu Aoki, Osaka U.

「J-PARCハドロン物理の将来研究計画を考える」研究会 理化学研究所 2008/9/I-2

・イントロダクション

- µ-e conversion 探索実験 @J-PARC --- COMET
 - ・パルス陽子
 - パイオン捕獲ソレノイド
 - カーブソレノイドスペクトロメータ
 - 実験感度
- mu2e@FNAL
- ・まとめ

µ-e Conversion

• Muonic Atom (IS state)

Muon Capture(MC)

 $\mu^- + (A, Z) \to \nu_\mu + (A, Z - 1)$

Muon Decay in Orbit (MDO) $\mu^- \rightarrow e^- \nu \overline{\nu}$

• MC:MDO = 1:1000(H), 3:2(Al), 13:1(Cu)

nuclei

- τ(free-μ-) = 2.2 μs
- $\tau(\mu; Al) = 0.88 \ \mu s$
- μ -e Conversion $\mu^{-}(A, Z) \rightarrow e^{-} + (A, Z)$ Coherent Process

 $BR[\mu^{-} + (A, Z) \to e^{-} + (A, Z)] \equiv \frac{\Gamma[\mu^{-} + (A, Z) \to e^{-} + (A, Z)]}{\Gamma[\mu^{-} + (A, Z) \to \nu_{\mu} + (A, Z - 1)]}$

µ⁺ + (A,Z) → e⁻ + (A,Z)
 レプトン・フレーバー非保存過程:標準理論では禁止されている。
 ニュートリノ混合による高次効果は非常に小さい
 標準理論を越える物理に敏感
 B(µ→eγ) = 3α/32π ∑_i |U_{µi}U^{*}_{ei} M²_{µj}|² ~ 10⁻⁶⁰ (m_ν/10⁻² eV)⁴
 A. de Gouvea

4

mixing Ũ \widetilde{R}

超対称性理論

slepton 質量行列の物理

理論的予想

Process	Current Limit	SUSY-GUT level	Future			
$\mu N \rightarrow e N$	10 ⁻¹³	10 ⁻¹⁶	10-16,10-18			
$\mu \rightarrow e \gamma$	IO ^{-II}	IO ⁻¹⁴	10 ⁻¹³			
$\tau \rightarrow \mu \gamma$	10 ⁻⁶	10 ⁻⁹	10 ⁻⁸			

January 31, 2008

Golden Trio

Physics Capabilities

J-PARC PAC report

The PAC is impressed with the physics capabilities of the proposed COMET experiment and believes that this experiment could become one of the flagship experiments in the J-PARC program.

US P5 Report

US Particle Physics: Scientific Opportunities A Strategic Plan for the Next Ten Years

Report of the Particle Physics Project Prioritization Panel

The panel recommends pursuing the muon-to-electron conversion experiment, subject to approval by the Fermilab PAC, under all budget scenarios considered by the panel. The intermediate budget

COMET Overview

- Pulsed Proton Beam
 - π-b.g. suppression
 J-PARC/MR
- Large µ yields
 - J-PARC/MR
 - only 60 kW out of 450kW
 - π-capture SC-solenoid
 - 10¹¹ μ/s (PSI:10⁸ μ/s)
- Curved-solenoid detector
 - Lower detector rate
- Upgradability to PRISM
 add Phase-Rotator-Ring

パルス陽子ビーム

- ・バックグランド
 - $\pi^+(A,Z) \rightarrow (A,Z^-I)^* \rightarrow \gamma^+(A,Z^-I), \gamma \rightarrow e^+e^-$: 一次陽子ビームに同期
- µ⁻ decay-in-flight, e⁻ scattering, neutron streaming
 信号
 - μ⁻ +(A,Z) → e⁻ +(A,Z): 遅延 (-1µs)

$$\begin{split} N_{bg} &= N_{P} \times R_{ext} \times Y_{\pi/P} \times A_{\pi} \times P_{\gamma} \times A \\ N_{P} : \text{total } \# \text{ of protons } (-10^{21}) \\ R_{ext} : Extinction \text{ Ratio } (10^{-9}) \\ Y_{\pi/P} : \pi \text{ yield per proton } (0.015) \\ A_{\pi} : \pi \text{ acceptance } (1.5 \times 10^{-6}) \\ P_{\gamma} : \text{Probability of } \gamma \text{ from } \pi (3.5 \times 10^{-5}) \\ A : \text{ detector acceptance } (0.18) \\ \hline BR = 10^{-16}, N_{bg} < 0.12 \\ \Leftrightarrow \text{ Extinction } < 10^{-9} \end{split}$$

パルス陽子 from J-PARC/MR

Tomizawa Scheme

- 8 GeV, 7 μA
- Beam Pulsing
 - Empty bucket Scheme
 - Bunched Slow Extraction
- Beam Emittance
 - V: Reduce RCS painting area
 - Reduce N_P in a bunch: small space charge effect
 - H: SX < 5π mm.mrad
- Proton Yield
 - High Repetition Rate

Extinction: < 10⁻⁹ Power: 60 kW (4×10¹³ pps@8 GeV)

Pion Capture

Curved Solenoid Spectrometer

Detector Acceptance & Signal Sensitivity

	87. 15 EE 51. 11 F	A 10. 19.2% G7.14 P2.A 0.14.0 91.25				
	Acceptance					
Geometrical Acc.		0.73				
Electron Transpor	0.44					
pt > 52 MeV/c	0.67					
$\chi^2 {\rm Cut} (\chi^2 < 9)$	0.86					
Energy Selection	0.56					
Timing cut	0.38					
Total		0.04				
Proton Intensity	4 × 10 ¹³ Hz					
Running Time	2	× 107 sec				
µ's yields per proton		0.007				
µ-stopping efficiency	0.26					
Total	1.5 × 10 ¹⁸ stopped μ 's					

 $B(\mu^{-} + Al \to e^{-} + Al) = \frac{1}{N_{\mu} \cdot f_{\text{cap}} \cdot A_{e}}$

• $N_{\mu} = 1.5 \times 10^{18}$ • $f_{cap} = 0.6$ for Aluminum • $A_e = 0.04$ • $B(\mu^{-} + Al \rightarrow e^{-} + Al) = 2.8 \times 10^{-17}$ $< 5 \times 10^{-17} (90\% \text{ C.L.})$

(Still) Straw-man's Layouts

Recent Activities

- muon task force (chaired by S. Mihara)
 - to address charges given by PAC
- J-PARC/MR extinction study
 - pulsed FX measurement: MR abort line
 - pulsed SX measurement: K1.8BR

COMET location study

mu2e @Fermilab

- mu2e(FNAL + xMECO)
 - Revive of MECO
 - After the shutdown of Tevatron
 - Parasite on SNuMI-2
 - 2012 ~
 - Renovate a Debuncher ring for beam bunching
- Single Event Sensitivity: 2×10⁻¹⁷

		FY07	FY08	FY09	FY10	FY11	FY12	FY13	FY14	FY15	FY16	FY17	FY18	FY19
1 TI	HE ENERGY FRONTIER													
1.1	Tevatron Collider													
1.2.1	Initial LHC													
1.2.2	SuperLHC—Phase 1													
1.2.3	SuperLHC—Phase 2													
1.3	ILC/Lepton Collider										/////	//////	//////	/////
2 TI	HE INTENSITY FRONTIER													
2.1	Neutrino Physics													
2.1.1	Mini and SciBOONE													
2.1.2	MINOS													
213 2.1.11	Double Chooz Doi beta Dec-inew Init.													568330
2.2	Precision Measurements													
2.2.1	Offshore B Factory													
2.2.2	Mu-e Conv Expt													
2.2.3	Rare K Decays													
2.3	DUSEL													
2.4	High Intens Proton Sce Fermilab													

Roadmap for the Scenario with Constant level of Effort at the FY2007 Level

まとめ

- μ-e電子転換過程は標準理論を越えたc-LFV過程の一つであり、TeVスケールの物理を研究する為の重要な手段を提供する。
 10⁻¹⁶まで探索すればイベントが見つかるかもしれない。
- MEG(µ→eγ 探索@ PSI)とは相補的である。
- COMET
 - BR=10⁻¹⁶ で µN→eN を探索する実験
 - J-PARC/MRとハドロンホールを活用
- Fermilab/mu2eとCOMETの競争
- muon-TF (chaired by S. Mihara)
 - extinction study
 - location study

End of Slides