「JPARCハドロン物理の将来研究
 計画を考える」研究会

J－PARCと格子QCD
－Nuclear Bound Charmoninum－
佐々木 勝一（東大）

Nuclear-Bound Charmonium

Brodsky, Schmidt, de Teramond, PRL 64 (1990) 1011

- Different quark flavors: (up, down vs. charm)
- Attractive QCD van der Waals interaction
- No Pauli blocking = No short-range repulsion
- The formation of charmonium bound to nuclei $(A \geq 3)$ - A genuine QCD effect at the nuclear level

Nuclear-Bound Charmonium

Brodsky, Schmidt, de Teramond, PRL 64 (1990) 1011

- Assumption 1: interaction between ccar and nucleon (N)
- $V_{(\bar{c}) N}(r)=-\gamma \frac{e^{-\alpha r}}{r} \quad(\gamma=0.4-0.6, \alpha=0.6 \mathrm{GeV})$
- parameters determined by the Pomeron model
- Assumption 2: interaction between cc ${ }^{\text {bar }}$ and nucleus (A) - the potential strength is linear in A (Pomeron model)

Nuclear-Bound Charmonium

Dependence of cc ${ }^{\text {bar }}$ and nucleus interaction

- the binding energy of $\eta_{c^{-}}{ }^{3} \mathrm{He}[\mathrm{MeV}]$

γ	Original work	Folding model 1	4-body calculation ${ }^{2}$
0.4	-3.0	-	-1.4
0.6	-19.0	-0.8	-12.6

Folding potential

$$
V_{(c \bar{c}) A}(r)=\int V_{(c \bar{c}) N}\left(r-r^{\prime}\right) \rho_{A}\left(r^{\prime}\right) d^{3} r^{\prime}
$$

Charmonium-Nucleon interaction

Charmonium-Nucleon interaction = "Multi-gluon exchange"

- Color van der Waals interaction given by two-gluon exchange
- Attractive long-range potential behaves like $1 / r^{n}(n \geq 6)$
- the scattering length $a=0.24 \mathrm{fm}$ (Brodsky-Miller')
- QCD sum rules: $a=0.1 \mathrm{fm}$ (Hayashigaki ${ }^{2}$)
- Lattice QCD: $a=0.71 \pm 0.48 \mathrm{fm}$ (Yokokawa-Sasaki-Hatsuda-Hayashigaki³)

Note that " $a>0$ " means atrractive
${ }^{1}$ Brodsky, Miller, PLB 412 (97) 125
${ }^{2}$ Hayashigaki., PTP 101 (99) 923
${ }^{3}$ Yokokawa et al., PRD 74 (06) 034504

cchor-Nucleon potentiol

$$
V_{(c \bar{c}) N}(r)=-\gamma \frac{e^{-\alpha r}}{r} \quad(\gamma=0.4-0.6, \alpha=0.6 \mathrm{GeV})
$$

Born approx. $a_{B}=-2 M_{\mathrm{red}} \int d r r^{2} V_{(c \bar{c}) N}(r)=2 M_{\mathrm{red}} \gamma / \alpha^{2}$

Y	a Born		
0.4	0.16 fm		
0.6	0.47 fm		

$a=0.24 \mathrm{fm}$ (color ven der Waals)
$a=0.1 \mathrm{fm}$ (QCD sum rules)
$a=0.71 \pm 0.48 \mathrm{fm}$ (Lattice QCD)

cclor-Nucleon potential

$$
V_{(c \bar{c}) N}(r)=-\gamma \frac{e^{-\alpha r}}{r} \quad(\gamma=0.4-0.6, \alpha=0.6 \mathrm{GeV})
$$

Bound state formation condition $D=2 M_{\text {red }} \gamma / \alpha>1.679798$

Y	a Born		D
0.4	0.16 fm		0.477
0.6	0.47 fm		1.430

$c^{\text {bur-Nucleon potential }}$

$$
V_{(c \bar{c}) N}(r)=-\gamma \frac{e^{-\alpha r}}{r} \quad(\gamma=0.4-0.6, \alpha=0.6 \mathrm{GeV})
$$

$\gamma=0.6$ is too strong for chanominum-nucleon interaction

Y	a Born	a	D
0.4	0.16 fm	0.21 fm	0.477
0.6	0.47 fm	1.65 fm	1.430

$$
\begin{aligned}
& a=0.24 \mathrm{fm} \text { (color ven der Waals) } \\
& a=0.1 \mathrm{fm} \text { (QCD sum rules) } \\
& a=0.71 \pm 0.48 \mathrm{fm} \text { (Latice QCD) }
\end{aligned}
$$

Toward more realisic prediction

Measure ac ${ }^{\text {bar }}$ - Nucleon potentials in lattice QCD

- momentum-dep. of phase shift (interaction range r)
- Wave Function Approach (CP-PACS)
c.f. NN potential (Ishii-Aoki-Hatsuda)

Exact few-body calculations with the realistic cccar $-N$ potential

- Gaussian Expansion Method (Hiyama-Kino-Kamimura)

Backup Files

Latiice results (quench approx.)

Yokokawa, Sasaki, Hatsuda, Hayashigaki, PRD 74 (06) 034504

Interaction of charmonia with light hadrons is always attractive

- the cc bar - pion scattering length is very small ($a=0.012 \pm 0.004 \mathrm{fm}$) as consistent with the soft-pion theorem.
- the cc ${ }^{\text {bar }}$ - Nucleon (rho) scattering length is an order of magnitude larger than that in the cc ${ }^{\text {bar }}$ - pion channel

$$
0<a^{(c \bar{c}) \pi} \ll a^{(c \bar{c}) \rho}<a^{(c \bar{c}) N}
$$

- No appreciable spin-dependence: cc $c^{\text {bar }}=\eta_{\text {c }}$ or J $/ \Psi$

Lattice resulis (quench approx.)

	a β	a^{-1} $[\mathrm{GeV}]$	Lattice size $\left(L^{3} \times T\right)$	$\sim L a$	
β	$[\mathrm{fm}]$	Statistics			
6.2	0.06775	2.913	$24^{3} \times 48$	1.6	161
			$32^{3} \times 48$	2.2	169
			$48^{3} \times 48$	3.2	53

Lüscher finite size formula

$$
\Delta E=-\frac{2 \pi a_{0}}{\mu L^{3}}\left(1+c_{1} \frac{a_{0}}{L}+c_{2}\left(\frac{a_{0}}{L}\right)^{2}\right)+O\left(L^{6}\right)
$$

From PSF From LLE

Channel	Spin	$a_{0}[\mathrm{fm}]$	$\sigma_{\text {el }}[\mathrm{mb}]$	$a_{0}[\mathrm{fm}]$	$\sigma_{\text {el }}[\mathrm{mb}]$
$J / \psi-\pi$	1	0.0119 ± 0.0039	$0.018_{-0.010}^{+0.013}$	0.0119 ± 0.0025	$0.018_{-0.007}^{+0.008}$
$J / \psi-\rho$	0	0.32 ± 0.12	$12.9_{-7.6}^{+11.0}$	0.23 ± 0.06	$6.6_{-3.2}^{+4.2}$
	1	0.25 ± 0.10	$7.9_{-4.9}^{+7.3}$	0.19 ± 0.06	$4.6_{-2.4}^{+3.3}$
	2	0.21 ± 0.09	$5.5_{-3.7}^{+5.6}$	0.17 ± 0.06	$3.5_{-2.0}^{+2.8}$
	SAV	0.23 ± 0.08	$6.8_{-4.2}^{+6.1}$	0.18 ± 0.05	$4.1_{-2.1}^{+2.9}$
$J / \psi-N$	$1 / 2$	0.57 ± 0.42	41_{-38}^{+83}	0.35 ± 0.15	15_{-10}^{+15}
	$3 / 2$	0.88 ± 0.63	96_{-89}^{+188}	0.43 ± 0.16	23_{-14}^{+20}
	SAV	0.71 ± 0.48	64_{-57}^{+116}	0.39 ± 0.14	20_{-12}^{+16}

From PSF From LLE

Channel	Spin	$a_{0}[\mathrm{fm}]$	$\sigma_{\text {el }}[\mathrm{mb}]$	$a_{0}[\mathrm{fm}]$	$\sigma_{\mathrm{el}}[\mathrm{mb}]$
$\eta_{c}-\pi$	0	0.0113 ± 0.0035	$0.016_{-0.008}^{+0.011}$	0.0112 ± 0.0024	$0.016_{-0.006}^{+0.008}$
$\eta_{c}-\rho$	1	0.21 ± 0.11	$5.3_{-4.3}^{+7.5}$	0.16 ± 0.05	$3.4_{-1.8}^{+2.5}$
$\eta_{c}-N$	$1 / 2$	0.70 ± 0.66	62_{-62}^{+172}	0.39 ± 0.14	$19_{-11}^{+1.8}$

$L^{3} \times T$		$a_{0}^{\eta_{c}-\pi}$	$a_{0}^{\eta_{c}-\rho}$	$a_{0}^{\eta_{c}-N}$
$24^{3} \times 48$	Physical	$0.15(5)$	$-0.25(48)$	$1.10(1.29)$
	Chiral	$-0.0025(15)$	$-0.25(48)$	$1.09(1.28)$
$32^{3} \times 48$	Physical	$0.15(5)$	$2.8(1.6)$	$8.8(9.2)$
	Chiral	$-0.0013(9)$	$2.7(1.6)$	$8.7(9.0)$
$48^{3} \times 48$	Physical	$0.33(17)$	$3.4(1.8)$	$12.4(10.5)$
	Chiral	$-0.0014(14)$	$3.4(1.8)$	$12.2(10.2)$

$$
a_{0}^{H-\pi}=-\left(1+\frac{M_{\pi}}{M_{H}}\right)^{-1} \frac{M_{\pi}}{4 \pi f_{\pi}^{2}} \vec{I}_{\pi} \cdot \vec{I}_{H}+O\left(M_{\pi}^{2}\right)
$$

where $\vec{I}_{\pi}\left(\vec{I}_{H}\right)$ is the isospin vector of $\pi(H)$
$\vec{I}_{\pi} \cdot \vec{I}_{H}=0$ for isoscalar hadron

Possible Experiments

Production of η_{c}-nucleus bound states
$p+d \rightarrow\left({ }^{3} \mathrm{He} \eta_{c}\right)$
$-p^{\text {bar }}+{ }^{4} \mathrm{He} \rightarrow\left({ }^{3} \mathrm{He} \eta_{c}\right)$
*Missing mass analysis (Mx) on ${ }^{3} \mathrm{He}+\mathrm{X}$ *Invariant mass analysis $\left(\mathrm{M}_{\mathrm{Y}}\right)$ on ${ }^{3} \mathrm{He}+\mathrm{Y} \mathrm{\gamma}$

