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Nuclear-Bound Charmonium
Brodsky, Schmidt, de Teramond, PRL 64 (1990) 1011

Different quark flavors: (up, down vs. charm)

Attractive QCD van der Waals interaction

No Pauli blocking = No short-range repulsion 

The formation of charmonium bound to nuclei (A≥3)

A genuine QCD effect at the nuclear level



Nuclear-Bound Charmonium
Brodsky, Schmidt, de Teramond, PRL 64 (1990) 1011

Assumption 1: interaction between ccbar and nucleon (N)

 

parameters determined by the Pomeron model

Assumption 2: interaction between ccbar and nucleus (A)

the potential strength is linear in A (Pomeron model)

V(cc̄)N (r) = −γ
e−αr

r
(γ = 0.4 − 0.6, α = 0.6 GeV)



Nuclear-Bound Charmonium
Dependence of ccbar and nucleus interaction 

the binding energy of ηc - 3He [MeV]

γ Original work Folding model1 4-body calculation2

0.4 –3.0 ---- –1.4
0.6 –19.0 – 0.8 –12.6

1 Wasson et al., PRL 67 (91) 2237
2 Belyaev et al., NPA 780 (06) 100V(cc̄)A(r) =

∫
V(cc̄)N (r − r′)ρA(r′)d3r′

Folding potential



Charmonium-Nucleon interaction
Charmonium-Nucleon interaction = “Multi-gluon exchange”

Color van der Waals interaction given by two-gluon exchange

Attractive long-range potential behaves like 1/rn  (n≥6) 

the scattering length a = 0.24 fm (Brodsky-Miller1)

QCD sum rules: a = 0.1 fm (Hayashigaki2)

Lattice QCD: a = 0.71±0.48 fm (Yokokawa-Sasaki-Hatsuda-Hayashigaki3)

Note that “a>0” means attractive 
1 Brodsky, Miller, PLB 412 (97) 125
2 Hayashigaki., PTP 101 (99) 923
3 Yokokawa et al., PRD 74 (06) 034504



ccbar-Nucleon potential

Born approx.

V(cc̄)N (r) = −γ
e−αr

r
(γ = 0.4 − 0.6, α = 0.6 GeV)

γ a Born

0.4 0.16 fm
0.6 0.47 fm

aB = −2Mred

∫
drr2V(cc̄)N (r) = 2Mredγ/α2

a = 0.24 fm (color ven der Waals)
a = 0.1 fm (QCD sum rules)
a = 0.71±0.48 fm (Lattice QCD)



ccbar-Nucleon potential

Bound state formation condition

V(cc̄)N (r) = −γ
e−αr

r
(γ = 0.4 − 0.6, α = 0.6 GeV)

γ a Born D
0.4 0.16 fm 0.477
0.6 0.47 fm 1.430

D = 2Mredγ/α > 1.679798



ccbar-Nucleon potential

γ=0.6 is too strong for chanominum-nucleon interaction

V(cc̄)N (r) = −γ
e−αr

r
(γ = 0.4 − 0.6, α = 0.6 GeV)

γ a Born a D
0.4 0.16 fm 0.21 fm 0.477
0.6 0.47 fm 1.65 fm 1.430

a = 0.24 fm (color ven der Waals)
a = 0.1 fm (QCD sum rules)
a = 0.71±0.48 fm (Lattice QCD)



Toward more realistic prediction

Measure ccbar - Nucleon potentials in lattice QCD

momentum-dep. of phase shift (interaction range r)

Wave Function Approach (CP-PACS)

c.f. NN potential (Ishii-Aoki-Hatsuda)

Exact few-body calculations with the realistic ccbar - N potential

Gaussian Expansion Method (Hiyama-Kino-Kamimura)

NN



Backup Files



Lattice results (quench approx.)

Yokokawa, Sasaki, Hatsuda, Hayashigaki, PRD 74 (06) 034504

Interaction of charmonia with light hadrons is always attractive

the ccbar - pion scattering length is very small (a = 0.012 ± 0.004 fm) 
as consistent with the soft-pion theorem.

the ccbar - Nucleon (rho) scattering length is an order of magnitude 
larger than that in the ccbar - pion channel

No appreciable spin-dependence: ccbar =ηc or J/ψ

0 < a(cc̄)π ! a(cc̄)ρ < a(cc̄)N



Lattice results (quench approx.)
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where k should vanish as 1=L with increasing L if there is
no bound state in this channel.

Assuming that the interaction range R is smaller than
one-half of the lattice size, R< L=2, the s-wave phase
shift in a finite box, !0#k$, may be written as [18]
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where q#% #kL2"$2$ takes a noninteger value due to the two-
particle interaction. The function Z00#1; q$ is an analytic
continuation of the generalized zeta function, Z00#s; q$ %
1!!!!!
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p
P

n2Z3#n2 & q$&s, from the region s > 3=2 to s " 1.
The s-wave scattering length a0 is defined through the
small k limit of the above formula.

If a0=L is sufficiently small, then one can make a Taylor
expansion of the phase-shift formula (13) around q2 " 0
and obtain [18]

 !E " & 2"a0
#L3

"
1! c1

a0
L

! c2

"
a0
L

#
2
#
!O#L6$ (14)

with c1 " &2:837 297 and c2 " 6:375 183. # denotes the
reduced mass of two hadrons, # " MJ= Mh=#MJ= !
Mh$. For !E> 0, Eq. (14) with an expansion up to
O#L&4$ and that up to O#L&5$ have a real and negative
solution for a0. On the other hand, for !E< 0, the expan-
sion up to O#L&4$ gives no real solution for

 !E<& "
2jc1j#L2 ; (15)

although the expansion up to O#L&5$ always has a real
solution. Therefore, we can use Eq. (15) as a necessary
condition to test the convergence of the large-L expansion.
If this condition is not satisfied or marginally satisfied, we
need to use the full expression of (13) to extract a0 from
!E. Equations (13)–(15) are the basic formulas to be
utilized in the following sections.

III. NUMERICAL RESULTS AND DISCUSSIONS

We have performed simulations in quenched QCD with
the single plaquette gauge action
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X
p

$
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3
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%
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where $ " 6=g2,Up " U#%#n$, and
P
p " P

n
P

#<% , and
the Wilson fermion action
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where & is the hopping parameter defined as & " 1
2#amq!4$

with the lattice spacing a and quark mass mq. We generate
gauge ensembles at a fixed gauge coupling $ " 6=g2 "
6:2 with three different lattice sizes, L3 ) T " 243 ) 48,
323 ) 48, and 483 ) 48. According to the Sommer scale
[27,28], $ " 6:2 in the quenched approximation corre-
sponds to a lattice cutoff of a&1 ’ 2:9 GeV, which may
be marginal to handle low-lying c "c mesons on the lattice.
We compute the quark propagators at three values of the
hopping parameter & " f0:1520; 0:1506; 0:1489g, which
correspond to M"=M( " 0:68, 0.83, and 0.90. &c "
0:1360 is reserved for the charm-quark mass. Simulation
parameters and the number of the gauge samples are
summarized in Table I. Preliminary accounts for L " 24
and 32 cases are given in Ref. [29].

For the update algorithm, we adopt the Metropolis al-
gorithm with 20 hits at each link update. The first 10 000
sweeps are discarded for thermalization. The gauge en-
sembles in each simulation are separated by 1200 (L "
48), 800 (L " 32), and 600 (L " 24) sweeps. For the
matrix inversion, we use BiCGStab algorithm and adopt
the convergence condition jrj< 10&8 for the residues. We
calculate smear-point quark propagators with a box-type
smeared source which are located at tsrc " 6 for the light
quarks and at tsrc " 5 for the charm quark. To enhance the
coupling to ground states of hadrons, we choose a 243 box
source, of which spatial lattice size is about 1.6 fm, on all
three volumes, instead of a wall (L3 box). Since the box-
type smeared source is gauge variant, Coulomb gauge
fixing is carried out by a combination of an SU#2$ subgroup
method and an overrelaxed steepest descent method.
Details of this procedure may be found in Ref. [30]. To
perform the precise parity projection for the nucleon, we
adopt a procedure to take an average of two quark propa-
gators which are subject to periodic and antiperiodic
boundary conditions in time as described in Refs. [31,32].

A. Energy shift !E

Hadron masses computed with the conventional single
exponential fit are summarized in Table II. &c " 0:1360
reproduces the mass of J= #3097$ approximately. The
mass of pseudoscalar meson becomes M" * 0:6 GeV for
& " 0:1520, 0.9 GeV for & " 0:1506, and 1.2 GeV for
& " 0:1489 in our simulations.

The energy shifts of two-hadron systems (J= -",
J= -(, and J= -N) are determined by the large-t behavior

TABLE I. Simulation parameters in this study. The Sommer
parameter r0 " 0:5 fm is used to fix the scale [27,28].

$
a

[fm]
a&1

[GeV]
Lattice size

(L3 ) T)
+La
[fm] Statistics

6.2 0.06775 2.913 243 ) 48 1.6 161
323 ) 48 2.2 169
483 ) 48 3.2 53
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 a!E ! c" c0#aM!$2; (19)

where c and c0 are determined numerically from the data.
In Fig. 2, full circles represent the energy shifts linearly
extrapolated by Eq. (19) with the physical pion mass
squared (M! ! 140 MeV). For the J= -" and J= -N
channels, we show also the results (full squares) obtained
from the weighted average of the data for two heavy-quark
masses (# ! 0:1506 and 0.1489). The purpose is to check
the sensitivity from the lightest data points which have
relatively large error bars. We find that results of full circles
and squares are in agreement with each other within the
errors, and hence we quote the results evaluated by Eq. (19)
in the following sections.

C. Volume dependence of the energy shifts

In Fig. 3, we show the volume dependence of the energy
shift !E at the physical point (M! ! 140 MeV). The left
panel is for the J= -! channel, the middle for the spin-0
J= -" channel, and the right for the spin-1=2 J= -N
channel. The horizontal axis denotes the spatial size L
and the vertical axis the energy shift !E. The dashed lines
indicate the lower boundary given in Eq. (15): If the data
points come below the dashed lines, the 1=L-expansion of
the phase-shift formula is no longer justified.

The volume dependence of the energy shift !E is a key
quantity to discuss the validity of the large-L expansion of
the phase-shift formula. We find that the absolute value of
the energy shift in the J= -! channel of Fig. 3 decreases
monotonically from L ! 24 to 48, which is consistent with
the leading 1=L3 behavior shown in Eq. (14). On the other
hand, the energy shift in the J= -" and J= -N channels
does not show such a monotonic decrease due to rather
small values of !E at L ! 24. This implies that the lattice
size L ! 24 (La% 1:6 fm) is too small to satisfy the
condition L> 2R% 2a0 so that the convergence of the
power series in Eq. (14) is questionable or even the

phase-shift formula in Eq. (13) itself is invalid. Thus, in
the J= -" and J= -N channels, we do not take the results
of L ! 24 as physical in the following analyses.

D. Volume dependence of scattering lengths

In the left panel of Fig. 4, we show the volume depen-
dence of the s-wave scattering length aJ= -!

0 at the physical
point (M! ! 140 MeV) obtained by applying the phase-
shift formula (13) to !E in Fig. 3. The horizontal axis is the
spatial size L and the vertical axis is the scattering length.
By taking into account the error bars for L ! 48 due to the
limited statistics, we do not find appreciable L dependence
for the J= -! scattering lengths. Also, the scattering
length is positive, which implies attraction between J= 
and ! at low energy.

In the middle panel of Fig. 4, we show the volume
dependence of the s-wave scattering length aJ= -"

0 ob-
tained by Eq. (13). Within the error bars, different spin
states have similar scattering lengths. The statistics in the
L ! 24 case is much better than L ! 32 and 48. However,
the L ! 24 data is contaminated by significant finite size
effect as discussed in Sec. III C on the basis of Fig. 3. The
scattering lengths for L ! 32 and 48 show the positive
values.

In the right panel of Fig. 4, we show the volume depen-
dence of the J= -N scattering length aJ= -N

0 obtained by
Eq. (13). Similar to the case in the J= -" channel, we do
not find appreciable spin dependence within the error bars.
Here the same discussion as the J= -" channel applies to
the L ! 24 data. Although we need to increase statistics to
make definite conclusion, the scattering length in J= -N
channel for L ! 32 and 48 is positive and is considerably
larger than that in the J= -! channel.

In Table VI, we summarize the s-wave scattering lengths
in lattice units at the physical point (M! ! 140 MeV) and
at the chiral limit (M! ! 0). The table shows a clear
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FIG. 3. The energy shifts !E as a function of spatial size L in lattice units. The left (middle, right) panel is for the J= -! (J= -" in
spin-0, J= -N in spin-1=2) channel. Full and open circles represent the values obtained from the linear chiral extrapolation to the
physical point, and the weighted average, respectively. The dashed curves show the lower boundary for the convergence of the large-L
expansion of !E.
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Lüscher finite size formula



while we use all data (L ! 24, 32 and 48) in the J= -!
channel.

As seen in Table VII, the results obtained from two
analysis (PSF and LLE) agree with each other within the
errors. Especially, in the J= -! case, both estimates are
fairly consistent with each other. The table also shows the
elastic cross sections at the threshold given by "el ! 4!a20.
We find that the s-wave scattering length in the J= -!
channel is quite small, 0.0119(39) fm, but definitely posi-
tive. Therefore, we conclude that the J= -! interaction is
attractive at least at low energy. The soft pion theorem,
where implies that the pion should decouple from any other
hadrons in the chiral limit (M! ! 0), is an account for such
smallness of the s-wave scattering length. The J= -!
elastic cross section at the threshold is evaluated as
"J= -!

el ! 0:018"0:013
#0:010 mb. This is consistent with a phe-

nomenological analysis based on short distant QCD by
Fujii and Kharzeev [16].

Although statistical errors in J= -# and J= -N chan-
nels are quite large, we find that s-wave scattering lengths
in these channels are likely to be positive and are at least an
order of magnitude larger than the pion case. As for the
J= -N channel, the scattering length from QCD sum rules
by Hayashigaki [12], gluonic van der Waals interaction by
Brodsky et al. [4], and the QCD multipole expansion by
Voloshin et al. [13] show that the s-wave scattering length
is about 0.1, 0.25, and 0.37 fm or larger, respectively. Our
central value of the scattering length 0.71 fm from PSF

(0.39 fm from LLE) is comparable or even larger than
those estimates, but we need to increase statistics of our
data to draw solid comparison.

F. Possible contaminations from channel mixings

Before closing the discussion on J= -hadron scattering
lengths, we comment on possible contaminations from the
$c-h and D !D states. If there were open channels with
lower energy than the J= -hadron system at the threshold,
the Lüscher’s formula for extracting the scattering phase
shift from "E in the desired channel is not applicable.

The J= -! system is free from the contamination of the
$c-! subthreshold state. This is because the s-wave $c-!
state has different total spin from the s-wave J= -! state.
On the other hand, for the J= -# case, we cannot exclude
the possible contamination of the $c-# state to the spin-1
J= -# state and that of the D !D state to the spin-0 J= -#
state. Only the highest spin state (spin-2) is definitely free
from such contaminations. This is true also for the case of
the J= -N system: The highest spin state (spin-3=2) is free
from the contamination of the $c-N state.

Thus, strictly speaking, the spin-1 J= -!, the spin-2
J= -#, and the spin-3=2 J= -N states are the safe channels
in determining the s-wave scattering phase shifts from the
Lüscher’s formula, although in our simulations we do not
find any appreciable difference among different spin chan-
nels within the error bars.

TABLE VIII. Fitting parameter A as the coefficient of the leading term in the large-L
expansion of the energy shift. For the J= -! channel, we used all energy shifts at L ! 24,
32, and 48 to extract the fitting parameter A. On the other hand, for the J= -# and J= -N
channels, we excluded the energy shifts at L ! 24 for evaluating the parameters A.

AJ= -! A0
J= -# A1

J= -# A2
J= -# A1=2

J= -N A3=2
J= -N

Physical #24$5% #101$28% #84$26% #73$25% #115$48% #140$52%

TABLE VII. The s-wave scattering lengths of J= -hadrons and the elastic cross sections at the
threshold in the physical unit. For the J= -! channel, the data for all three volumes of L ! 24,
32, and 48 are used, while for the J= -# and J= -N channels, only the data for L ! 32 and 48
are used. In the table, ‘‘PSF’’ and ‘‘LLE’’ stand for the phase-shift formula and leading large-L
expansion, respectively. SAV stands for the spin-averaged value, 1

9 &5$a0%2 " 3$a0%1 " $a0%0' for
the J= -# channel, and 1

3 &2$a0%3=2 " $a0%1=2' for the J= -N channel.

From PSF From LLE
Channel Spin a0 [fm] "el [mb] a0 [fm] "el [mb]

J= -! 1 0:0119( 0:0039 0:018"0:013
#0:010 0:0119( 0:0025 0:018"0:008

#0:007

J= -# 0 0:32( 0:12 12:9"11:0
#7:6 0:23( 0:06 6:6"4:2

#3:2
1 0:25( 0:10 7:9"7:3

#4:9 0:19( 0:06 4:6"3:3
#2:4

2 0:21( 0:09 5:5"5:6
#3:7 0:17( 0:06 3:5"2:8

#2:0
SAV 0:23( 0:08 6:8"6:1

#4:2 0:18( 0:05 4:1"2:9
#2:1

J= -N 1=2 0:57( 0:42 41"83
#38 0:35( 0:15 15"15

#10
3=2 0:88( 0:63 96"188

#89 0:43( 0:16 23"20
#14

SAV 0:71( 0:48 64"116
#57 0:39( 0:14 20"16

#12
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similar to those in the J= case: The energy shift is
definitely negative in all three channels at L ! 32 and
48. Also, we find 0< a!c-"0 " a!c-#0 < a!c-N0 . In the
!c-# and !c-N channels, considerable finite L effect
may exist at L ! 24. All analyses are made in the same
way as the case of J= . Table IX contains two types of the
chirally extrapolated value of the s-wave scattering length
in all channels for each volume. In Table X, we compare
results obtained from two different analyses (PSF and
LLE). The coefficients A in LLE are tabulated in Table XI.

The s-wave !c-" scattering length turns out to be
0:0113# 0:0035 fm and the corresponding elastic cross
section at the threshold is $!c-"

el ! 0:016$0:011
%0:008 mb, both of

which are very close to the values in the J= -" channel.
Although we have large error bars, the scattering lengths in
the !c-# and !c-N channels are also comparable with
those in the J= -# and J= -N channels.

IV. SUMMARY AND CONCLUDING REMARKS

In this paper, we have studied the interactions of J= 
and !c with light hadrons at low energy in quenched lattice
QCD simulations. We calculated the scattering lengths of
J= -", #, N and !c-", #, N from the energy shifts !E of
two hadrons in a finite periodic box L3 by using the
Lüscher’s phase-shift formula. We employed the lattice
spacing a ’ &2:9 GeV'%1, three light-quark masses
M"=M# ’ 0:68, 0.83, 0.90, and three lattice sizes La (
1:6, 2.2, and 3.2 fm. Their values were utilized to perform
analyses on quark-mass and lattice-size dependences of the
energy shifts and the scattering lengths.

We did not find appreciable quark-mass dependence of
!E in all channels, while in the J= -" channel it turned
out that there is a tendency that the energy shift approaches

zero in simultaneous chiral and large-volume limits as
indicated in the current algebra analysis.

As for the volume dependence of the energy shifts, the
1=L3 behavior, which is expected from the asymptotic
expansion of the Lüscher’s formula in terms of 1=L, was
seen in the J= -" and !c-" channels. On the other hand,
in the J= -#, N and !c-#, N channels, the data at L ! 24
do not follow the 1=L3 behavior [33]. Indeed, La ! 1:6 fm
is not large enough to accommodate even a single hadron
such as N [34].

On the basis of the above observation, we adopted the
data for L ! 24, 32, and 48 in the J= &!c'-" channel and
the data for L ! 32 and 48 in the J= &!c'-# and
J= &!c'-N channels. Then we applied the Lüscher’s for-
mula without 1=L-expansion (which we call PSF) and with
1=L-expansion (which we call LLE). The resultant s-wave
scattering lengths obtained from !E show that (i) the
interaction of charmonia with light hadrons is always
attractive, (ii) the scattering lengths in the J= &!c'-"
channels are quite small compared to other channels as
consistent with the soft-pion theorem, and (iii) the scatter-
ing lengths in the J= &!c'-# and J= &!c'-N channels are
at least an order of magnitude larger than those in the
J= &!c'-" channels.

The s-wave J= -" (!c-") scattering length is deter-
mined as 0:0119# 0:0039 fm (0:0113# 0:0035 fm) and
the corresponding elastic cross section at the threshold
becomes 0:018$0:013

%0:010 mb (0:016$0:011
%0:008 mb). On the other

hand, the J= -N (!c-N) spin-averaged scattering length
is 0:71# 0:48 fm (0:70# 0:66 fm) which has still a large
statistical errors. Nevertheless, our result in the J= -N
channel may be compared with estimates from QCD sum
rules ( ) 0:1 fm), from the gluonic van der Waals interac-
tion ( ) 0:25 fm) and from the QCD multipole expansion
( ) 0:37 fm or larger).

To have a more quantitative understanding of the scat-
tering lengths, in particular, of their magnitudes and spin
dependences, we need to accumulate more statistics. Since
our data for the J= &!c'-#&N' channels indicate that the
scattering length is rather large so that the large-L expan-
sion is not fully justified even for L ! 32 and 48.
Therefore, it is important to go to larger volume to reduce
the systematic errors due to the finite volume. Simulations
with dynamical quarks are also an important future direc-

TABLE XI. Fitting parameter A as the coefficient of the lead-
ing term in the large-L expansion of the energy shift. For the
!c-" channel, we use all energy shifts at L ! 24, 32, and 48 to
extract the fitting parameter A. On the other hand, for the !c-#
and !c-N channels, we exclude the energy shifts at L ! 24 for
evaluating the parameters A.

A!c-" A!c-# A!c-N

Physical %23&5' %72&23' %127&47'

TABLE X. The s-wave scattering lengths of !c-hadrons and the elastic cross sections at the
threshold in the physical unit. For the !c-" channel, the data for all three volumes of L ! 24, 32,
and 48 are used, while for the !c-# and !c-N channels, only the data for L ! 32 and 48 are
used. The labels are the same as in Table VII.

From PSF From LLE
Channel Spin a0 [fm] $el [mb] a0 [fm] $el [mb]

!c-" 0 0:0113# 0:0035 0:016$0:011
%0:008 0:0112# 0:0024 0:016$0:008

%0:006
!c-# 1 0:21# 0:11 5:3$7:5

%4:3 0:16# 0:05 3:4$2:5
%1:8

!c-N 1=2 0:70# 0:66 62$172
%62 0:39# 0:14 19$16

%11
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G. !c-hadron interactions

The scattering length of !c with light hadrons can be
performed in exactly the same way as the J= case by
using the conventional !c interpolating operator as in
Sec. II:

 O!c! ~x; t" # !ca! ~x; t""5ca! ~x; t": (21)

In the present paper, we neglect the disconnected diagrams
in both the two-point function of !c and the related four-
point functions as we have done in the case of J= . From
the theoretical point of view, neglecting the disconnected
diagrams in the !c channel is less justified than that in the
J= channel. On the other hand, it is numerically observed
that the contributions from the disconnected diagrams are
negligibly small for the charm quark even in the pseudo-
scalar channel [25,26].

In our simulations the mass difference between the J= 
and !c is about 30 MeV, which is considerably smaller
than the experimental value, 116 MeV. It is known that the

hyperfine splitting is sensitive to the quenched approxima-
tion and the leading discretization error of the Wilson
fermion action [25,26]. Therefore, the spin-dependent ob-
servables in our simulations should be taken with caution.

Under these reservations, the volume dependences of the
energy shift and the scattering length are shown in Figs. 5
and 6, respectively. Qualitative features of the figures are
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FIG. 5. The energy shifts "E as a function of spatial size L in lattice units. The left (middle, right) panel is for the !c-# (!c-$, !c-N)
channel. Full and open circles represent the values obtained from the linear chiral extrapolation to the physical point, and the weighted
average, respectively. The dashed curves show the lower boundary for the convergence of the large-L expansion of "E.
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FIG. 6. The scattering lengths as a function of the spatial size L in lattice units for the physical pion mass (M# # 140 MeV). The left
(middle, right) panel is for the !c-# (!c-$, !c-N) channel.

TABLE IX. Results of the chiral extrapolated values of s-wave
scattering lengths in lattice units for all !c-hadron channels. The
labels are the same as in Table III.

L3 $ T a!c-#0 a!c-$0 a!c-N0

243 $ 48 Physical 0.15(5) %0:25!48" 1.10(1.29)
Chiral %0:0025!15" %0:25!48" 1.09(1.28)

323 $ 48 Physical 0.15(5) 2.8(1.6) 8.8(9.2)
Chiral %0:0013!9" 2.7(1.6) 8.7(9.0)

483 $ 48 Physical 0.33(17) 3.4(1.8) 12.4(10.5)
Chiral %0:0014!14" 3.4(1.8) 12.2(10.2)
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We study the scattering lengths of charmonia (J= and !c) with light hadrons (", #, and N) by the
quenched lattice QCD simulations on 243 ! 48, 323 ! 48, and 483 ! 48 lattices with the lattice spacing
a ’ 0:068 fm. The scattering length is extracted by using the Lüscher’s phase-shift formula together with
the measurement of the energy shift !E of two hadrons on the lattice. We find that there exist attractive
interactions in all channels, J= "!c#-", J= "!c#-#, and J= "!c#-N: The s-wave J= -" (!c-")
scattering length is determined as 0:0119$ 0:0039 fm (0:0113$ 0:0035 fm) and the corresponding
elastic cross section at the threshold becomes 0:018%0:013

&0:010 mb (0:016%0:011
&0:008 mb). Also, the J= -N (!c-N)

spin-averaged scattering length is 0:71$ 0:48 fm (0:70$ 0:66 fm), which is at least an order of
magnitude larger than the charmonium-pion scattering length. The volume dependence of the energy
shifts is also investigated to check the expected 1=L3 behavior of !E at a large spatial size L.
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I. INTRODUCTION

Properties of single hadrons have been studied in quan-
tum chromodynamics (QCD) by using various techniques
such as the QCD sum rules and lattice QCD simulations.
On the other hand, the interaction between color-singlet
hadrons is not fully explored yet because of their complex
nature originating from quark exchanges and multiple
gluon exchanges.

In this paper, we study the low-energy elastic scattering
of charmonia (J= and !c) with isononsinglet hadrons
composed of up and down quarks (", #, and N) on the
basis of the quenched lattice QCD simulations. Since the
valence quarks in each hadron in the initial state stay in the
same hadron in the final state, the process we consider is
much simpler than the interactions between light hadrons,
while it is still nontrivial in the sense that nonperturbative
gluon exchanges play essential roles. Furthermore, such
interaction has a direct relation to the physics of
charmonium-nucleus (A) bound states [1–5] and an indi-
rect relation to the elastic and inelastic charmonium-
hadron interactions at high energies [6–8].

The charmonium-N interaction at low energies has been
discussed in the framework of operator product expansion
[9–14] and in some hadronic model [8]. For example,
Hayashigaki has shown that the s-wave J= -N scattering
length aJ= -N

0 is about 0.1 fm by using QCD sum rules [12],
while Brodsky and Miller found that it is about 0.25 fm
from the gluonic van der Waals interaction [4]. Recently,
Sibirtsev and Voloshin suggested that a lower bound of the
aJ= -N
0 is as large as 0.37 fm from the multipole expansion

analysis of chromopolarizability [13]. In the above-
mentioned calculations, the elastic cross section at the
threshold reads 1.3, 7.9, and 17 mb, respectively.
Brodsky, Schmidt, and de Téramond introduced an effec-
tive charmonium-nucleon potential V"r# ' &$e&%r=r

with the parameters $ ' 0:42( 0:59 and % ' 6:0 GeV
estimated by a phenomenological model of Pomeron in-
teractions [1]. They argued that the J= -A bound system
may be realized for mass number A ) 3 if the attraction is
sufficiently large, which was later confirmed by Wasson,
who solved the Schrödinger equation for the charmonium-
nucleus system [2].

Unlike the case of J= -N, the interaction of the char-
monium with the pion has a special feature due to the
Nambu-Goldstone nature of the pion. The current algebra
shows that the s-wave scattering length of a heavy hadron
(H) with the pion is given by the well-known formula [15]:

 aH-"
0 ' &

!
1%M"

MH

"&1 M"

4"f2"
~I" * ~IH %O"M2

"#; (1)

where ~I" ( ~IH) is the isospin vector of " (H) and ~I" * ~IH '
1
2 +I"I % 1# & IH"IH % 1# & 2, with I being the total isospin
of the "-H system. For the "-N case, this is known as the
Tomozawa-Weinberg relation. Equation (1) indicates that
the soft pion decouples from any hadrons in the chiral limit
(M" ! 0). More importantly in our context, the leading
term in Eq. (1) vanishes even if M" is finite as long as H is
isoscalar (such as J= and !c): Namely, the low-energy
pion interaction with the charmonium states is very weak
of O"M2

"#. An alternative estimate based on the color-
dipole description of heavy quarkonia shows a small but
attractive interaction between the charmonium and the
pion [10,11,16]. Here, the contribution stems from the
QCD trace anomaly and the effect starts from O"M2

"# as
consistent with the current algebra analysis [17].

The method we employ for extracting the charmonium-
hadron scattering lengths is the quenched lattice QCD
simulations together with the phase-shift formula by
Lüscher [18]. The basic idea is to put two hadrons in a
finite box with a spatial size L and to measure the energy of
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!Iπ · !IH = 0 for isoscalar hadron



Possible Experiments
Production of ηc -nucleus bound states

p + d → (3He ηc)

pbar + 4He → (3He ηc) 

*Missing mass analysis (MX) on 3He + X

*Invariant mass analysis (Mγγ) on 3He + γγ




