J-PARC における 原子核中のハドロン

慈道大介(京都大学基礎物理学研究所)

our aim

- produce new hadron-nucleus systems
- investigate the properties
- extrapolate the knowledge

structure, hadron properties

dense nuclear matter (neutron star)

hadron-nucleus system (new exotics)

mesons in nuclei(中間子原子核)

hadronic molecular states etc.

(hadronic atoms) ex. π atom, K atom, Ξ atom, ...

(hypernuclei)

fundamental interactions

hadron spectroscopy, hadron structure baryon resonance: **mesons excite nucleons in nuclei**

ultimate goal

understanding of strong interactions of QCD

Kaons in nuclei

one of the ultimate goals

 $\Sigma_K(E_K, \rho_p, \rho_n)$

mesons in nuclei(中間子原子核) challenge of mesic nuclei

	(hypernuclei)	mesic nuclei
binding	Coulomb assisted (strong int.)	strong int.
decay	strong int. (weak int.)	strong int.
possible orbits	surface or outside (inside nucleus)	inside nucleus
width	keV \sim I MeV	several 10s MeV couples to B*
bound states	well separated	overlapped

mesons in nuclei (中間子原子核) recoilless kinematics

selection rule for nucleon hole and meson states

 $s_N^{-1} \otimes s_m, \ p_N^{-1} \otimes p_m, \dots$

meson ground state is s-state

creation of s-state hole costs energy

nuclei with s-state hole are highly excited states large distortion effects

as another possiblity

two-nucleon pick-up reaction $(\pi,d), (\gamma,d)$ etc. J=0 with "shallow" two nucleon holes and meson complications in theoretical calculations

mesons in nuclei (中間子原子核) cf. hadronic atoms

meson-nucleus systems governed by strong interactions

issue: bound or unbound ?	K ^{bar} N: strong attraction
mesons	
Κ^{bar}, η, ω, η', Φ , J/Ψ,	narrow widths in vacuum
σ, ρ, Κ*,	wide widths in vacuum
π, Κ,	repulsive

bind and decay by strong interactions

wide widths naturally expected how wide ??

suppression of widths in deeply bound systems !?

mesons excite nucleons in nuclei

creation of baryon resonances in nuclei

meson - B*-hole couplings

hadronic excitation of hypernuclei

ゆ中間子原子核カイラル対称性の部分的回復を strange quark で見る
$$\phi$$
N相互作用は U(3) 対称性では消える (OZI rule)OZI rule の破れと $\langle N|\bar{s}s|N \rangle$ hadronic decay $\phi \rightarrow K\bar{K}$ 核媒質効果の asymmetry $K^{bar}N 引力$
 $KN 斥力$

η中間子原子核 (eta mesic nuclei)

- η N strongly couples to N(1535)
- level crossing of η and N*-h modes

- N(1535) is a candidate of chiral partner of N

Reduction of the mass difference of N and N^\ast

Jido, Nagahiro, Hirenzaki, PRC66, 045202 ('02) Nagahiro, Jido, Hirenzaki, PRC68, 035205 ('03), NPA761,92 ('05) Jido, Kolomeitsev, Nagahiro, Hirenzaki, NPA accepted

N

 $\eta \leq$

N*

Spectral function of in-medium eta meson

Energy dependence Infinite matter calc.

Green function

$$G_{\eta}(\omega) = \frac{1}{\omega - m_{\eta} - V_{\eta}(\omega)}$$

Optical potential of
$$\eta$$
 in nucleus

$$V_{\eta}(\omega) = \frac{g_{\eta}^2}{2\mu} \frac{\rho(r)}{w + m_N^*(\rho) - m_{N^*}^*(\rho) + i\Gamma_{N^*}(\omega;\rho)/2}$$

K meson and $\Lambda(1405)$ -h modes

Yamagata, Jido, Nagahiro, Hirenzaki in preparation

ハドロン励起状態

hadron resonances : produced by strong interactions

theory : many models based on different aspects experiment : rich and precise data

It's ready to investigate details of the structure of hadron resonances from both sides

properties in vacuum : masses, widths and couplings **mesons in nuclei** : meson excites nucleon

dynamical aspect

decaying resonance \rightarrow large hadronic components

hadron dynamics is important

symmetry aspect

symmetry of quarks

chiral partners: N(1535) chiral partner of nucleon ??

Implication of double pole structure

 $\Lambda(1405)$ spectrum is dependent on channels

Resonance position in K^{bar}N channel ~1425 MeV with narrower width

~1425 MeV with narrower width not 1405 MeV

This 20 MeV difference is important for K^{bar}N interactions

Subthreshold properties of K^{bar}N $\Lambda(1405)$ spectra in K^{bar}N channel $\bar{K}N \rightarrow \Lambda(1405)$ $K^- d \rightarrow \Lambda(1405)n$ Sekihara, DJ, Oset, in progress 90 ChUM s-wave+p-wave Data-Background 80 $K^-d \rightarrow \Sigma^-\pi^+n$ Fit-Background 70 240. 60 1824 EVENTS 50 200. (b) $\Lambda(1520)$ 40 30 160. 20 10 $\Lambda(1405)$ 120. 1420 1340 1360 1380 1400 1440 80 K^{-} $\Lambda(1405)$ ţö. pn9.70 2.02 1.86 2.34 2.18 $M (\Sigma^{-}\pi^{+})^{2} [GeV^{2}]$ 7 $K^ K^- d \to \pi^+ \Sigma^- n$ np \bar{K}^0 peak position 1420 MeV n $\Lambda(1405)$ NPB129, I, ('77) bubble chamber

ハドロン励起状態の大きさ 励起状態の構造

クォーク自由度 v.s. ハドロン自由度

ハドロン分子状態~原子核中の核子間距離 (~I fm)

hadronic molecular

新しいハドロン励起状態

N* as KKbarN quasibound state

 Ξ^* as KKbarN quasibound state

main decay modes: three-body decay

$\Lambda(1405)$ への doorway

N* around 1900 MeV

spacial structure

hadron-hadron distances are comparable with nucleon-nucleon distances in nuclei r.m.s radius (1.7 fm) is larger than that of ${}^{4}\text{He}$ (1.4 fm)

mean hadron density: 0.07 hadrons/(fm³)

$\Lambda(1405)$ a₀(980) 2.8 fm (2.3)Κ Ν 2.3 fm 2.1 fm (2.1)(1.4)K^{bar}

20~40 MeV bound, 90~100 MeV width

Y. Kanada-En'yo, DJ, PRC78,025212 (08). DJ,Y. Kanada-En'yo, arXiv:0806.3601, PRC in press

K中間子が特別な役割

Connection to QCD establish in-medium effective theory of QCD in medium chiral perturbation theory medium modifications of LEC's LEC = low energy constant fpi, fK, sigma term etc. give connections to universal parameters

exact sum rule in chiral limit

DJ, Hatsuda, Kunihiro, **arXiv:0805.4453** [nucl-th]

$$\sum_{\alpha} \operatorname{Re}\left[(N_{\alpha}^{*} + F_{\alpha}^{*}) Z_{\alpha}^{*1/2} \right] = -\langle \bar{q}q \rangle^{*}$$

low energy theorem

all zero modes contribute to in-medium quark condensate.

Summary

our aim

- produce new hadron-nucleus systems
- investigate the properties
- extrapolate the knowledge

mesons in nuclei \Leftrightarrow baryon resonance in nuclei

B* hypernuclei complex but interesting systems !! a lot of things can be learnt

challenges

observe bound states !! wide widths and many subcomponents

calculate spectra in detail !!

necessary to establish in-medium effective theory

to connect observation to QCD

η

η中間子原子核 (eta mesic nuclei)

chiral doublet model と chiral unitary model の違いの詳細

どちらも N*-hole 模型

N*の取り扱い(picture)が異なる

chiral doublet model

NとN*が chiral doublet

NとN*の質量差が減少 → level crossing

chiral unitary model

N* : dynamically generated resonance

KΣ channel が重要 → Pauli blocking effect が小さい

Optical potential of η in nucleus

N*-hole excitation

Assumption

- 1) N* dominance: Consider only N*-hole excitation.
- 2) s-wave coupling for ηNN^*
- 3) η at rest in nucleus due to the recoilless condition

 $V_{\eta}(\omega) = \frac{g_{\eta}^2}{2\mu w + m_N^*(\rho) - m_{N^*}^*(\rho)} + i\Gamma_{N^*}(\omega;\rho)/2$

Optical potential of η in nucleus

$g_\eta~~\eta { m NN^*}$ coupling

- μ η-nucleus reduced mass
- w η energy

Real part of optical potential depends on eta energy and mass difference of N and N*.

We have seen reduction of N-N* mass difference in nuclear medium in chiral doublet model.

$$\omega + m_N^* - m_{N^*}^* < 0 \quad \text{repulsion}$$

$$\omega + m_N^* - m_{N^*}^* < 0 \quad \text{repulsion}$$

$$Density \text{ dependence}$$

$$Energy \text{ dependence}$$

$$no \text{ medium effects}$$

$$no \text{ medium effects}$$

$$medium effects ?$$

Optical potential of η in nucleus

Density dependence

fixing energy at
$$~\omega=m_\eta$$
 .

Jido, Kolomeitsev, Nagahiro, Hirenzaki, NPA accepted

Green function of in-medium eta meson Energy dependence

potential strongly depends on energy

 \rightarrow bound states calculated in self-consistent way

Green function $G_{\eta}(\omega) = \frac{1}{\omega - m_{\eta} - V_{\eta}(\omega)}$

propagation of modes as poles pole position: in-medium "mass"

Two modes of propagation Eta meson mode N*-hole mode couple in nuclear medium change places if level crossing takes place

Jido, Kolomeitsev, Nagahiro, Hirenzaki, NPA accepted

Spectral function of in-medium eta meson

Energy dependence Infinite matter calc.

Green function $G_{\eta}(\omega) = \frac{1}{\omega - m_{\eta} - V_{\eta}(\omega)}$

Optical potential of η in nucleus

$$V_{\eta}(\omega) = rac{g_{\eta}^2}{2\mu} rac{
ho(r)}{w + m_N^*(
ho) - m_{N^*}^*(
ho) + i\Gamma_{N^*}(\omega;
ho)/2}$$

Spectral function

What is hadronic molecular state ?

- system of multiple hadrons described by hadron dynamics possible constituents are ground states hadrons octet baryons: N, Λ , Σ , Ξ octet meson: π , K, η
- constituents keep their identity

typical binding energy ~ 10-20 MeV weakly bound system

decay width ~ 50 MeV (strong interactions)

- spatially extended (large size) typically more than I fm
- softer form factors strong energy dependence in production

quark degrees of freedom may be less important

ex. Λ(1405) as K^{bar}N QBS

quasi-bound state

K meson in ∧(1405)

small binding energy ~ 10-30 MeV

- heavy particle ~ half of nucleon mass

non-relativisitc treatment

cf. pion $m_{\pi} \approx 140 \text{ MeV}$

- Nambu-Goldstone boson

strong s-wave attraction in K^{bar}N

chiral effective theory momentum expansion

s-wave int. proportional to K energy

Kaons are different from pions in the energies of our interest !!

isospin averaged mass				
m_K	=	$495.7~{\rm MeV}$		
m_N	=	$938.9~{\rm MeV}$		

Result KK^{bar}N

N* around 1900 MeV

spacial structure

hadron-hadron distances are comparable with nucleon-nucleon distances in nuclei

r.m.s radius (1.7 fm) is larger than that of 4 He (1.4 fm)

mean hadron density: 0.07 hadrons/(fm³)

KN repulsion important

parameter set	(A)	(A)	(B)	(B)
$V_{ar{K}N}$	HW-HNJH	HW-HNJH	AY	AY
V_{KN}	on	off	on	off
ReE (MeV)	-19	-39	-41	-57
ImE (MeV)	-44	-72	-49	-63
$\langle \mathrm{Im} V_{\bar{K}N}^{I=0} \rangle$ (MeV)	-17	-30	-19	-23
$\langle \mathrm{Im} V_{\bar{K}N}^{I=1} \rangle$ (MeV)	$^{-1}$	0	0	0
$\langle \mathrm{Im} V_{K\bar{K}}^{I=0} \rangle$ (MeV)	-1	-10	-4	-10
$\langle \mathrm{Im} V_{K\bar{K}}^{I=1} \rangle$ (MeV)	-25	-31	-25	-31

threshold of KK^{bar}N 1930 MeV

	(A)	(A)	(B)	(B)
	HW-HNJH	HW-HNJH	AY	AY
V_{KN}	on	off	on	off
isospin configuration				
$\Pi\left(\left[\bar{K}N\right]_{0}\right)$	0.93	1.00	0.99	1.00
$\Pi\left(\left[\bar{K}N\right]_{1}\right)$	0.07	0.00	0.01	0.00
$\Pi\left(\left[K\bar{K}\right]_{0}\right)$	0.09	0.25	0.17	0.25
$\Pi\left(\left[K\bar{K}\right]_{1}\right)$	0.91	0.75	0.83	0.75
spatial structure				
$r_{K\bar{K}N}$ (fm)	1.7	1.0	1.4	1.0
$d_{ar{K}N}~({ m fm})$	2.1	1.3	1.3	1.2
$d_{K\bar{K}}~({ m fm})$	2.3	1.4	2.1	1.5
d_{KN} (fm)	2.8	1.6	2.3	1.6

$K\bar{K}N$ system with I=1/2, J^P=1/2⁺ (N*)

Interactions in KK^{bar}N system

	- 4 4	I=0	=	threshold
$\bar{K}N$	attra	$\Lambda(1405)$	weak attraction	1434.6 MeV
$K\bar{K}$		$f_0(980)$	$a_0(980)$	991.4 MeV
KN	repul	sion very week	strong repulsion	1434.6 MeV

 $\Lambda(1405)$, f₀(980) and a₀(980) are assumed to be quasi-bound states

naturally expect KK^{bar}N bound state below Λ^* +K and f₀(a₀)+N

questions

- does KN repulsion spoil bound state ?
- are the attractions too strong to hadronic molecular picture ?