K-ビームを用いた ハイパートライトンの 寿命直接測定の現状(2) -³ A Production result-

Osaka University T. Akaishi For the J-PARC E73 collaboration

日本物理学会2021年秋季大会

Introduction

Hypertriton (³_ΛH): Lightest hypernucleus with p, n and Λ
 >Benchmark for hypernuclear physics

Small binding energy by emulsion data has been generally accepted.

 $B_{\wedge} = 130 \pm 50 \text{ keV}$

✓Small B_Λ → large separation between Λ & d → lifetime τ ~ free Λ is naively expected

Hypertriton lifetime puzzle

Exp.	Lifetime			
HypHI(2013)	$183^{+42}_{-32} \pm 37 \text{ ps}$			
ALICE(2016)	181 ⁺⁵⁴ ± 33 ps			
STAR(2018)	$142^{+24}_{-21} \pm 29 \text{ ps}$			
Free Λ(263 ps)				

>Short lifetimes from heavy ion experiments in 2010's

Hypertriton lifetime puzzle

2021/09/1

Toward solving hypertriton lifetime puzzle

• the detail of the ${}^3_{\Lambda}$ H should be clearly understood \Rightarrow an independent and complementary approach

0.8

0.6

1.2

LAB MOMENTUM p_K- (GeV/c)

1.0

 produce the ground state of ³_AH(1/2⁺)
 provide important data on the hypertriton lifetime puzzle

2.0

1.8

1.6

1.4

J-PARC E73: Experimental principle ^γ³He(K⁻, π⁰)³, H reaction

(1)tag (K⁻, π⁰) reaction by detecting forward single high-energy gamma with calorimeter →almost 100% detection efficiency for forward going π⁰ (0< $θ_{lab}^{π^0}$ <10) ⇒tag Λ production with low recoil momentum Reduce BG from Y decays and multi pion production

J-PARC E73: Experimental principle ^γ³He(K⁻, π⁰)³, H reaction

②Measure Momentum and Timing with Cylindrical Detector System (CDS) select the mono-momentum of π- after 2-body decay low recoil momentum (~100 MeV/c)
 →Hypertriton stops immediately inside the target
 ⇒2-body decay "almost" at rest

Identify ³_AH and derive lifetime from decay time

2021/09

J-PARC K1.8BR Beamline

Strategy of J-PARC E73

Phase-0

- > Feasibility study of new method with the (K-, π^0) reaction using ⁴He target
- ⇒expected to be relatively easy to generate and identify ⁴_∧H
 > Data taking in June 2020 (3 d)

Phase-1

>Production cross section study for ${}^{3}_{\Lambda}H$ >Data taking in May 2021(4 d)

Phase-2

>Direct lifetime measurement for ${}^{3}_{\Lambda}H$ >planned in JFY2022 (1 month)

Hypernucleus	${}^{4}\Lambda$ H	${}^{3}\Lambda H$
Branching ratio to 2-body decay	50 %	25 %
Relative cross section	1	0.3-0.4
Relative yield	1	0.15-0.2

New

calculation of cross section by Prof. Harada T. Harada and Y. Hirabayashi, https://arxiv.org/abs/2106.04256v2

• Successfully established new method of (K⁻, π^0) reaction

Phase-1: pi- momentum dis. of ${}^{3}_{\Lambda}H$

Phase-1: cross section ratio ${}^3_{\Lambda}H/{}^4_{\Lambda}H$

Rough estimation

Hypernucleus	³ ∧H	${}^{4}\Lambda H$	
Luminosity	11.32 G Kaon × 0.070 g/cm ³	6.05 G Kaon × 0.145 g/cm ³	\rightarrow Almost same
# of signal	~200	~1200	\rightarrow 1/6
Branching ratio to 2 body decay	25 %	50 %	→ 1/2

 $\Rightarrow \sigma(^{3}_{\Lambda}H)/\sigma(^{4}_{\Lambda}H) \sim 1/3$

Consistent with calculation of cross section by Prof. Harada

T. Harada and Y. Hirabayashi, https://arxiv.org/abs/2106.04256v2

Summary

J-PARC E73: Direct measurement of ³_AH lifetime
 Different experimental method from heavy ion-based experiment
 Selectively produce ground state of ³_AH(1/2⁺)

• Current status of the experiment > Phase-0: established a method by (K⁻, π^0) reaction $\Rightarrow {}^4_{\Lambda}$ H lifetime

```
>Phase-1: confirmed {}^{3}_{\Lambda}H production
⇒cross section of {}^{3}_{\Lambda}H
```

>Phase-2: ${}^{3}_{\Lambda}$ H lifetime measurement ~ 1 month beam time, ${}^{3}_{\Lambda}$ H ~1000 events, ~10 % error → in JFY2022

J-PARC E73 collaboration

T. Akaishi¹, H. Asano¹⁰, X. Chen⁴, A. Clozza⁶, C. Curceanu⁶, R. Del Grande⁶, C. Guaraldo⁶, C. Han^{4,10}, T. Hashimoto³, M. Iliescu⁶, K. Inoue¹, S. Ishimoto², K. Itahashi¹⁰, M. Iwasaki¹⁰, Y. Ma¹⁰, M. Miliucci⁶, H. Noumi¹, H. Ohnishi⁹, S. Okada¹⁰, H. Outa¹⁰, K. Piscicchia^{6,8}, F. Sakuma¹⁰, M. Sato², A. Scordo⁶, D. Sirghi^{6,7}, F. Sirghi^{6,7}, K. Shirotori¹, S. Suzuki², K. Tanida³, T. Yamaga¹⁰, X. Yuan⁴, P. Zhang⁴, Y. Zhang⁴, H. Zhang⁵

 ¹Osaka University, Osaka, 560-0043, Japan
 ²High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan
 ³Japan Atomic Energy Agency, Ibaraki 319-1195, Japan
 ⁴Institute of Modern Physics, Gansu 730000, China
 ⁵School of Nuclear Science and Technology, Lanzhou University, Gansu 730000, China
 ⁶Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy
 ⁷Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Magurele, Romania
 ⁸CENTRO FERMI - Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", 00184 Rome, Italy
 ⁹Tohoku University, Miyagi, 982-0826, Japan

¹⁰RIKEN, Wako, 351-0198, Japan

Backup

日本物理学会2021年秋季大会

Phase-1: ³_AH 3-body decay

Why be seen peak structure of 3-body decay

>Qualitative

✓³_∧H 3-body decay

✓ large separation between $\Lambda \& d \rightarrow$ fermi motion of Λ is small

Small effect to pion momentum

≻Theorical

✓H. Kamada, et al.,Phys. Rev. C57, 1595 (1998)

need to be careful when estimating the # of events

