

 $^{3}_{\Lambda}$ H寿命测定

■物理背景 ▶ハイパートライトン(³^AH): p, n, Aが束縛した最も軽いハイパー核 ✓束縛エネルギー: B_A = 130 ± 50 keV

▶近年の重イオン実験結果: 短い寿命 →ハイパートライトンパズル ⇒異なる実験手法: 寿命直接測定 ✓カウンター実験の結果なし

⇒ τ ≈ 263 ps (free ∧の寿命に近いと期待)

Exp.	Lifetime
HypHI(2013)	$183^{+42}_{-32} \pm 37 \text{ ps}$
STAR(2018)	$142^{+24}_{-21} \pm 29 \text{ ps}$
ALICE(2019)	$242^{+34}_{-38} \pm 17 \text{ ps}$

重イオン実験 vs 直接寿命測定

■重イオン実験: STAR, ALICE, HypHI

▶不変質量を再構成

✓CTから寿命を導出

✓Huge combinatorial BG

complementary

 直接寿命測定: J-PARC, ELPH
 >中間子崩壊におけるπの崩壊時間(ほぼ静止状態)
 ✓広い範囲でfitが可能

✓BG: quasi-free $Y \rightarrow \pi^- N$

⇒J-PARC E73実験で計画、進行中

日本物理学会第76回年次大会

0.01

0.08

0.2

³^AHを同定してπ⁻の崩壊時間から寿命を導出

日本物理学会第76回年次大会

kaon

0.8

1.0

2021/03/12

0.6

P₊ (GeV/c)

0.4

実験セットアップ: PbF₂ カロリメータ

▶PbF2結晶

✓チェレンコフ光によるカロリメータ

 →応答が早い,放射線耐性
 →ハドロンとの分離

 ✓高エネルギーガンマ線をタグ(>600 MeV)
 →Y崩壊からのBGを除去

6

J-PARC E73実験の現状

Stage-0

>4He標的で(K⁻, π⁰)反応のFeasibility study ✓2020/06にデータ取得 →新しい手法でハイパー核を識別

Stage-1
 ³[∧]Hのcross section study
 (K⁻, π⁰)反応における³[∧]H生成: First measurement
 →測定に向けて準備中(今年夏前予定)

■ Stage-2 >³ Hの寿命測定: 2022年度後半予定

⁴ Aの寿命でworld recordになりうるデータ: statistical error <10 ps ✓3日のビームタイムで取得

日本物理学会第76回年次大会

Stage-1: cross section of Hypertriton

■³He(K⁻,π⁰)³∧H: 未測定 →収量が知りたい

▶Stage-1: ³ H のcross section study ✓1週間程度(今年夏前期待)

Prof. T. Harada's calculation: $\sigma({}^{3}_{\Lambda}H)/\sigma({}^{4}_{\Lambda}H) \sim 1/3$ CDCC (continuum discretized coupled-channels) method and DWIA ✓得られた ${}^{4}_{\Lambda}Hの結果から見積り$

≻Stage-2: 寿命測定 ~ 4 weeks

■余談: (K, π)反応⇒Spin-nonflip ▶³^H^{1⁄2+}g.s.</sub>がdominant

$$\sigma(^{3}_{A}H) \cdot BR(^{3}_{A}H \rightarrow 2body) \sim \frac{1}{3}\sigma(^{4}_{A}H) \cdot \frac{1}{2}BR(^{4}_{A}H \rightarrow 2body)$$

まとめ

ハイパートライトンパズル

▶B_∧=130 KeV, free ∧に近い寿命 ⇔ 重イオンの結果: 短い寿命

■³He(K⁻, π⁰)³ H 反応を用いて³ H寿命直接測定(J-PARC E73)を計画 ▶重イオン実験とは異なる実験手法

■ 実験の現状 → stage-0: ⁴ AH生成のFeasibility studyを実施 ✓新しい手法でハイパー核生成、識別 ✓ Output: ⁴ AHの寿命, cross section

>Stage-1: ³_∧Hのcross section study √³He(K-, π⁰)³_∧H 反応でfirst measurement √1週間程度(今年夏前期待)

▶ Stage-2: ³ H寿命測定 ~ 2022年度後半予定

Backup

日本物理学会第76回年次大会

lifetime

PLB Vol.797, 10 October 2019, 134905

Introduction: heavy ion results

ALICE as an example for the experimental approach.

$$\tau = 240^{+40}_{-31}$$
(stat.) ± 18 (syst.)

Depends on tracking results for decay length and momentum as $t = L/\beta\gamma c$

ALICE collaboration, PLB, 797 (2019) 134905

日本物理学会第76回年次大会

2021/03/12

前方ガンマ線のタグ

2021/03/12

日本物理学会第76回年次大会

前方カロリメータの役割

ポイント: ハイパー核生成事象のγ線をタグする

▶ バックグラウンドの低減 ◆前方の高いエネルギーの γ 線 →シグナルとquasi-free BGのみ ◆低エネルギーの γ 線 → Λ , Σ からの崩壊が主 ⇒エネルギーカットでBG低減が可能

・エネルギー分解能: <10 %/√E(GeV)

* π⁰ tagger needs to be *located along beam line* * *Fast response, radiation hardness*

Background events from Kaon in-flight decay

For setup like SKS dipole magnet spectrometer, there are severe BG from K- inflight decay.

But in our case, a conjunction measurement of both pi- and pi0, the kaon decay backgrounds can be suppressed by using the pi- decay angle and decay vertex.

CDC acceptance vs Kaon decay background

Most of the 1.0 GeV/c K- beam in-flight decay background is out of the acceptance of CDS spectrometer.

Part I: Performance estimation

	Reaction(decay) and final states	Charged particle timing structure	Branching ra- tio	σ [mb/Sr] for $p_{K^-}=0.9$ GeV/c and $\theta_{\pi^0}=0$
	$ K^{-3} \text{He} \rightarrow \pi^{0.3} \text{H} \rightarrow \begin{cases} \pi^0 \pi^{-3} \text{He} \rightarrow 2\gamma \pi^{-3} \text{He} \end{cases} $	delayed π^-	?%	?%
out of	$\pi^0 p n n_s \rightarrow 2\gamma p n n$	delayed p	?%	?%
	$\int \pi^0 \mu^- \bar{\nu}_\mu \to 2\gamma \mu^- \bar{\nu}_\mu$	prompt μ^-	3.32%	322 - 21.00
pi0⊕pi-	$\mathbf{K}^- \rightarrow \left\{ \begin{array}{c} \pi^0 \pi^- \rightarrow 2\gamma \pi^- \end{array} \right\}$	prompt <i>π</i> ⁻	20.92%	Not included
Cceptance $ \begin{array}{c} \pi^{0}\pi^{0}\pi^{-} \\ \overline{}^{0}\pi^{0}\pi^{-} \\ \overline{}^{0}\pi^{-} \\ \phantom{x$	$\pi^0\pi^0\pi^- o 4\gamma\pi^-$	prompt π^-	1.76%	
	$\pi^0 \pi^0 n \to 4\gamma n$	N. A.	35.8%	
	$\pi^0 \pi^- p \to 2\gamma \pi^- p$	delayed π^- , p	63.9%	4.5
	$K^- \to \pi^0 \Sigma^0 \to \pi^0 \times A \to \int \pi^0 \gamma \pi^0 n \to 5\gamma n$	N. A.	35.8%	0.36 (scaled)
	$\left[\pi^{0} \gamma \pi^{-} p \rightarrow 3\gamma \pi^{-} p\right]$	delayed π^- , p	63.9%	
	$K^- p \to \pi^- \Sigma^+ \to \int \pi^- \pi^0 p \to 2\gamma \pi^- p$	prompt π^- , delayed p	51.57%	20
	$\pi^-\pi^+$ n	N. A.	48.31%	0.9
	$\mathbf{K}^- \; \mathbf{p} \rightarrow \pi^+ \; \Sigma^- \rightarrow \pi^+ \; \pi^- \; \mathbf{n}$	N. A.	100%	Not included
	$\int \pi^{-} \pi^{0} \mathbf{n} \to 2\gamma \pi^{-} \mathbf{n}$	prompt <i>π</i> ⁻	35.8%	Not included
	$\left(\begin{array}{c} \pi^{-}\pi^{-}p \rightarrow 2\pi^{-}p \end{array}\right) \pi^{-}\pi^{-}p \rightarrow 2\pi^{-}p$	N. A.	63.9%	
	$\pi^- \gamma \pi^0 n \to 3\gamma \pi^- n$	prompt <i>π</i> ⁻	35.8%	Not included
	$\begin{bmatrix} \kappa & n \to \pi^{-} 2^{-} \to \pi^{-} \gamma \Lambda^{-} \\ \pi^{-} \gamma \pi^{-} p \to \gamma 2\pi^{-} p \end{bmatrix}$	N. A.	63.9%	
	$\mathbf{K}^- \mathbf{n} \to \pi^0 \Sigma^- \to \pi^0 \pi^- \mathbf{n} \to 2\gamma \pi^- \mathbf{n}$	delayed π^-	100%	0.9 (scaled)

日本物理学会第76回年次大会

Table 4: Survey for $K^- + {}^{3}He \rightarrow$ forward π^0 + delayed π^- .

ハドロン,電子の応答@J-PARC K1.8BR

ハドロンビームを照射(電子も混在): 1 GeV/c
 ➤Time-of-Flightでπ, K, pbarを選択
 ➤エネルギーの和を取る

✓中心とその周りのある閾値(3.5 MeV相当)を超えたセグメント

⁴_AH生成のテスト実験

⁴He(K⁻, π⁰)⁴[∧]H 反応
 >3 days, 6 G K on target
 ▶解析コンディション

✓CDS

π⁻中間子を選択, 運動量を導出 ✓Cut条件

TOF, Vertex, CDC-CDH, mass2, DCA cuts, dE corrections

PbF₂によるバックグラウンドの低減
 ⁴_ΛH生成時の高エネルギーγ線を選択
 ⇒signalをほとんど失わず
 S:N比が向上
 カット前: 3:2 カット後: 4:1
 →寿命の精度が向上

⁴He CDS ~133 MeV/ π-運動量分布 500 All [▶]∕ H Accept 400 reject 300 200 100 -0.25 -0.15 -0.05-0.1 Pion mommentum [MeV/c] 2021/03/12

MeV/c

2

Counts/

日本物理学会第76回年次大会

Cross sectionの見積もり

Momentum using BLC1, D5 magnet, BLC2

日本物理学会第76回年次大会

2021/03/12

アセンブリ

▶PbF₂カロリメータ 40セグメントを使用(縦5×横8)

- ✓PMT: H6612B(3段ブースター付き)
- ✓結晶とPMTの接着:紫外線硬化樹脂,オプティカルセメント
- ✓反射材: 鏡面反射

✓QDC: CAEN v792

磁気シールド PMT H6612B 2.5 cm 14 cm

PbF2カロリメータ動作実験

2019/12 ELPH 2020/06 J-PARC K1.8BR ▶1GeV/c ハドロンビーム >100-800 MeV/c 陽電子ビーム ⇒エネルギー応答, ⇒Feasibility study(物理ラン) エネルギー分解能のチェック ⁴He標的で実験を実施 ▶反射材: アルミナイズドマイラー ▶反射材: ESR ▶カロリメータ1セグメントの最大レート: 80 k/1 spill(2 s)PbF₂ 実験セットアップ 標的周り CDH² CDC Beam PbF₂ Target cell

日本物理学会第76回年次大会

Charged Particle Veto Counter

2021/03/12

PbF2カロリメータ reference

- ■CP 非保存のK 中間子稀崩壊過程測定 New muon(g-2) exp. @Fermilab KEK – PS E391a >2.0-4.5 GeV >1.5−4.0 GeV/c
 - ▶統計項 a₀: 3.4 ± 0.1 %
 - ▶ 定数項 b:1.5 ± 0.0 %
 - ✓結晶サイズ: 25×25×140 mm³
 - ✓MPPC: S12642-4040PA-50
 - ✓Millipore
 - \checkmark optical gel (1.62), protective epoxy resin (1.55)

NIMA, Volume 783, 21 May 2015

山形大学 吉田祐樹氏の修論(2003)

✓シリコングリース OKEN-6262A

▶統計項 a_n: 3.3 ± 0.2 %

>ノイズ項 a₁: 2.2 ± 0.4 %

▶定数項 b:3.9 ± 0.0 %

✓テフロンテープ

✓結晶サイズ: 20×20×100 mm³

✓PMT: 3/4 インチ R4125UV

³_人H測定実験の動向

Lifetime

- ▶重イオン実験
 - ✓ALICE
 - ✓STAR
- ▶直接測定 ✓ELPH: (γ, K⁺) ✓J-PARC E73: (K⁻,π⁰)

Binding Energy
 Jlab: (e,e'K⁺)

T77 results: ${}^{4}_{\Lambda}$ H lifetime measurement

- T77 ${}^{4}_{\Lambda}$ H lifetime fitting: σ < 10ps (statistical only)
 - * preliminary data analysis (T77 finished on June 26th)
- KEK data with stopped K-: $\tau \sim 194^{+24}$ -26 ps
- ✤ Improve the precision by a factor of ~3 (3days beam time!)

2021/03/12