Towards solving the hypertriton lifetime puzzle with
direct lifetime measurement:
current status of J-PARC E73 experiment

y.ma@riken.jp
Outline

- Introduction & motivation
- J-PARC E73:
 - Experimental method
 - Current status
- Summary
As the lightest hypernucleus, $^3\Lambda\text{H}$ should tell us some important fact of YN interactions just as deuteron for nuclear physics.

A well separated wave function between Λ and deuteron implies small modification of $^3\Lambda\text{H}$ lifetime from deuteron and, thus, its lifetime should be presumably determined by free Λ decay.

Up to a few years ago, we believe: $\tau \approx 263\text{ ps (}B_\Lambda = 130 \pm 50\text{ keV)}$. $^3\Lambda\text{H} \rightarrow ^3\text{He} + \pi$- decay probability: $\text{kinematics} \times |\text{transition matrix}|^2 \sim \text{phase space} \times \text{wave function overlap} \text{ a small term (separation of } \sim 10\text{ fm})$
Introduction: motivation

As the lightest hypernucleus, $^3_\Lambda$H should tell us some important fact of YN interactions just as deuteron for nuclear physics.

Up to a few years ago, we believe:
$\tau \approx 263$ ps ($B_\Lambda = 130 \pm 50$ keV);
However, heavy ion experiments suggest $\tau \approx 180$ ps…

Hypertriton lifetime puzzle challenges the very foundation of our knowledge for hypernucleus.

<table>
<thead>
<tr>
<th>Collaboration</th>
<th>Experimental method</th>
<th>$^3_\Lambda$H lifetime [ps]</th>
<th>Release date</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALICE</td>
<td>Pb collider</td>
<td>240_{-31}^{+40} (stat.)±18 (syst.)</td>
<td>2019</td>
</tr>
<tr>
<td>STAR</td>
<td>Au collider</td>
<td>142_{-21}^{+24} (stat.)±29 (syst.)</td>
<td>2018</td>
</tr>
<tr>
<td>HypHI</td>
<td>fixed target</td>
<td>183_{-32}^{+42} (stat.)±37 (syst.)</td>
<td>2013</td>
</tr>
</tbody>
</table>

Neither fish nor fowl?
Heavy ion results vs direct lifetime measurement

Heavy ion results:
- Convert decay length to lifetime \(t = L / (\beta \gamma c) \);
- Statistics concentrate in the first few bins.

Direct lifetime measurement:
- Lifetime convoluted with time resolution;
- Relatively wide fitting range.

Methods for *direct lifetime measurement*

- $\pi^- + \text{He}_3 \rightarrow K^0 + \text{Hypertriton}$:
 - proposed by A. Feliciello, INFN, Torino, Italy

- $\gamma + \text{He}_3 \rightarrow K^+ + \text{Hypertriton}$:
 - proposed by S. Nagao, Tohoku University

- $K^- + \text{He}_3 \rightarrow \pi^0 + \text{Hypertriton}$:
 - by J-PARC E73 collaboration

- how to detect π^0, which decays into 2 gamma almost immediately?
How does E73 work by tagging single γ-ray?

3He(K-, $\pi^{0})^{3}_{\Lambda}H$ strangeness exchange reaction is known for its spin non-flip feature --> helps to pin down the $^{3}_{\Lambda}H$ Q.N.

Input
π^{0}: 0~1GeV/c; 0~180deg

W/ PbF2 calorimeter cut
π^{0}: 0.8~1GeV/c; 0~10deg

PbF2 calorimeter selection
$\theta_{\gamma} < 8$deg & $E_{\gamma} > 600$MeV
--> select very forward π^{0}
--> slowly moving Λ/Σ
--> enhancement of $^{3}_{\Lambda}H$

Λ/Σ: ~ 200MeV/c
Experimental setup: π^0 tagger (PbF_2)

- **π^- peak**
- **electron peak**

Expected performance after one month beam time
(10 times more resistive than Pb glass)

<table>
<thead>
<tr>
<th>Crystal</th>
<th>Radiation length</th>
<th>Moliere radius</th>
<th>Density</th>
<th>Cost</th>
<th>Resolution</th>
<th>Signal length</th>
</tr>
</thead>
<tbody>
<tr>
<td>PbF_2</td>
<td>0.93 cm</td>
<td>2.22 cm</td>
<td>7.77 g/cm3</td>
<td>12 USD/cc</td>
<td>5%</td>
<td>2ns</td>
</tr>
</tbody>
</table>

The idea of \textit{direct measurement}: $T_{CDH} - T_0 = t_{beam} + t_{\pi} + \tau$;

1. A complementary measurement for Heavy Ion results
2. Achievable precision: $\sigma/\sqrt{N} \sim 30\text{ps}$
PbF2 calorimeter performance @ELPH

PbF2 calorimeter was installed INTO the beam line

5%/\sqrt{E} resolution measured with positron beam, 2019

pi-/K- beam signal on PbF2 calorimeter

electrons mixed in beam line (can be used for calibration)
Current status of J-PARC E73

<table>
<thead>
<tr>
<th>Staging:</th>
<th>Stage-0</th>
<th>Stage-1</th>
<th>Stage-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task:</td>
<td>Background study with $^4\text{He}(K^-, \text{pi0})^4\Lambda\text{H}$</td>
<td>First measurement for $^3\text{He}(K^-, \text{pi0})^3\Lambda\text{H}$ reaction</td>
<td>Direct lifetime measurement for $^3\Lambda\text{H}$</td>
</tr>
<tr>
<td>Output:</td>
<td>Established a new method as: $(K^-,\text{pi0}) +$ decay spectrum</td>
<td>Production cross section study for $^3\Lambda\text{H}$ @ 1GeV/c</td>
<td>Pin down Hypertriton lifetime puzzle</td>
</tr>
<tr>
<td>Status:</td>
<td>Cleared by T77 experiment</td>
<td>Fully ready for beam time from now on</td>
<td>Depends on Stage-1 results</td>
</tr>
</tbody>
</table>
Stage-0: feasibility study for E73

\[K^- + ^4 He \rightarrow ^4 \Lambda H + \pi^0 \]

- T77 refreshes world record for \(^4\Lambda H\) statistics by twice \((1.2k\; events)\);
- New method improves S/N by ~10 times;
- All these happen within 3 days of beam time!

W/ \(\delta E\) correction

132.6 ± 0.1 (stat.) MeV/c
Stage-1: cross section & spin of Hypertriton

- Hypertriton isospin:
 - He\textsubscript{4}: \(T=0\) & He\textsubscript{3}: \(T=1/2\)
 - He\textsubscript{3}(K-, \pi0)\textsubscript{H3L} --> H\textsubscript{3L}: \(T=0\)

- Hypertriton ground state spin is determined by two-body/three-body ratio.
- No direct determination so far...
- E73 stage-1 experiment will shed light on this issue.

https://doi.org/10.1103/PhysRevD.1.66
Stage-1: cross section & spin of Hypertriton

(e, e’K+) reaction @ J-Lab

\(^3\Lambda H/\ ^4\Lambda H \sim 0.26 \pm 0.10\) in average

1.7 deg: 0.25 vs 12 deg: 0.90:
Difficult to interpret, something new?

• (K, pi) reaction is well-known as
spin non-flip feature

• Prof. T. Harada’s calculation:
\(^3\Lambda H/\ ^4\Lambda H \sim 1/3\) for ground state
Summary

- We have established a new method to investigate the isospin mirror Hypernuclei by gamma-ray tagging.
- E73 experiment has been approved as stage-1 and ready for data taking from now on.
 - First counter experiment to determine the Hypertriton ground state spin & cross section --> hint for the 3/2+ state by combining J-Lab results.
- Lifetime measurement is planned around ~2022.
P73/T77 collaborator list

T. Akaishi1, H. Asano10, X. Chen4, A. Clozza6, C. Curceanu6, R. Del Grande6, C. Guaraldo6, C. Han4,10, T. Hashimoto3, M. Iliescu6, K. Inoue1, S. Ishimoto2, K. Itahashi10, M. Iwasaki10, Y. Ma10, M. Miliucci6, H. Noumi1, H. Ohnishi9, S. Okada10, H. Outa10, K. Piscicchia6,8, F. Sakuma10, M. Sato2, A. Scordo6, D. Sirghi6,7, F. Sirghi6,7, K. Shirotori1, S. Suzuki2, K. Tanida3, T. Yamaga10, X. Yuan4, P. Zhang4, Y. Zhang4, H. Zhang5

1Osaka University, Osaka, 560-0043, Japan
2High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan
3Japan Atomic Energy Agency, Ibaraki 319-1195, Japan
4Institute of Modern Physics, Gansu 730000, China
5School of Nuclear Science and Technology, Lanzhou University, Gansu 730000, China
6Laboratori Nazionali di Frascati dell’ INFN, I-00044 Frascati, Italy
7Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Magurele, Romania
8CENTRO FERMI - Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, 00184 Rome, Italy
9Tohoku University, Miyagi, 982-0826, Japan
10RIKEN, Wako, 351-0198, Japan
Backup
Most of the 1.0 GeV/c K- beam in-flight decay background is out of the acceptance of CDS spectrometer.
CDS tracking system works well;
- ~2% momentum resolution for ~100MeV/c pi- signals;
- TOF resolution ~137ps from prompt pi- scattered event
T77 results: pi- spectrum from $^4\Lambda H$

- T77 refreshes world record for $^4\Lambda H$ statistics by twice;
- New method improves S/N by ~ 10 times;
- All these happen within 3 days of beam time!
Physics Motivation

- Recent heavy-ion experiments reported different lifetime of hyper-triton, $^3\Lambda H$:

<table>
<thead>
<tr>
<th>STAR (2018)</th>
<th>ALICE (2018)</th>
<th>free Λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$142^{+24}_{-21} \pm 29$ ps</td>
<td>$237^{+33}_{-36} \pm 17$ ps</td>
<td>263 ± 2 ps</td>
</tr>
</tbody>
</table>

- $\tau(^3\Lambda H) \sim \tau($free $\Lambda)$ is naively expected, because $^3\Lambda H$ is known to be very loosely bound system (~0.13MeV)

\Rightarrow need to clarify the situation using different experimental technique
$^4\Lambda H$ Lifetime @ KEK

- $^4\text{He}(\text{stopped } K^-, \pi^-)^4\Lambda H$ reaction
- The lifetime was obtained from a fitting with a simulated spectrum

For cross-check, we will apply the same procedure to the $^3\Lambda H$ analysis.
Heavy ion experiments: *indirect measurement*

ALICE as an example for the experimental approach.

\[c\tau = \left(5.4^{+1.6}_{-1.2} \text{(stat.)} \pm 1.00 \text{(syst.)} \right) \text{ cm} \]

\[\tau = \left(181^{+54}_{-39} \text{(stat.)} \pm 33 \text{(syst.)} \right) \text{ ps} \]

Depends on tracking results for decay length and momentum as

\[t = \frac{L}{\beta \gamma c} \]
Example: stopped K- experiment at KEK:
1. tagging π0 with NaI
2. measuring π- momentum with 300ps delay
3. subtract background from neighboring π- bins
4. fit lifetime with convoluted distribution

Stage-0: feasibility study for E73

- T77 $^4\Lambda$H lifetime fitting: $\sigma < 10$ps (statistical only)
 - preliminary data analysis (T77 finished on June 26th)
- KEK data with stopped K-: $\tau \sim 194^{+24}_{-26}$ ps
 - Improve the precision by a factor of ~ 3 (3 days beam time!)
Stage-1: cross section & spin of Hypertriton

(e, e’K+) reaction @ J-Lab

- $^4\Lambda$H contains both 0+ and 1+ states (spin-flip favored) in J-Lab results;
- $^3\Lambda$H is pure 1/2+ or has a virtual 3/2+ state near threshold?
- Can not be distinguished with ~4MeV resolution

DOI: 10.1103/PhysRevLett.93.242501