

Osaka University T. Akaishi For the J-PARC E73 collaboration

Outline

Introduction

>Hypertriton lifetime

► Motivation of J-PARC E73 experiment

J-PARC E73 experiment Experimental principle

>Result of ${}^{4}_{\Lambda}H$ data

 $>^{3}_{\Lambda}H$ production result with pilot run

Summary

Introduction

Hypertriton (³_ΛH): Lightest hypernucleus with p, n and Λ
 >Benchmark for hypernuclear physics

>Small binding energy by emulsion data has been generally accepted.

 $B_{\wedge} = 130 \pm 50 \text{ keV}$

✓Small B_Λ → large separation between Λ & d → lifetime τ ~ free Λ is naively expected

Hypertriton lifetime puzzle

Exp.	Lifetime				
HypHI(2013)	$183^{+42}_{-32} \pm 37 \text{ ps}$				
ALICE(2016)	$181^{+54}_{-39} \pm 33 \text{ ps}$				
STAR(2018)	$142^{+24}_{-21} \pm 29 \text{ ps}$				
Free Λ(263 ps)					

>Short lifetimes from heavy ion experiments in 2010's

2021/09/22

Hypertriton lifetime puzzle

Binding energy

Emulsion measurement

 $B_{\Lambda} = 0.13 \pm 0.05 \text{ MeV}$

P. Achenbach, et al, PoS(Hadron2017)207

Binding energy

Heavy-ion experiment - STAR

2021/09/2

Binding energy

Heavy-ion experiment – ALICE in 2018 Pb-Pb collisions

From ALICE public Preliminary figure https://alice-figure.web.cern.ch/node/19569

> ALICE collaboration hypertriton binding energy new result

> suggest the loosely bound system of Hypertriton

Need more

 ALI – PREL–486370
 NPB47: R.H. Dalitz, R.C. Herndon, Y.C. Tang, Nuclear Physics B, Volume 47, 1972, 109-137

 arXiv:1711.07521: Lonardoni, D. and Pederiva, F, arXiv:1711.07521 [nucl-th]

 PRC77: Y. Fujiwara, Y., Suzuki, M. Kohno and K. Miyagawa, Phys. Rev. C 77, 027001

 EPJ56: B.Dönigus, Eur.Phys.J.A 56 (2020) 11, 280

Experiments on Hypertriton

Heavy ion-based experiments

- ≻STAR
- ►ALICE
- ≻GSI (WASA-FRS experiment)
- Counter experiments for lifetime
 >ELPH, Tohoku-U, Japan: (γ, K⁺)
 >J-PARC P74: (π⁻, K⁰)
 >J-PARC E73: (K⁻, π⁰) ← Our project
 - Binding energy measurement
 MAMI (e, e'K) decay pion spectroscopy
 JLab (e, e'K)
 J-PARC E07: Emulsion full scan

Hypertriton still motivates activates studies

Toward solving hypertriton lifetime puzzle

Toward solving hypertriton lifetime puzzle

• the detail of the ${}^3_{\Lambda}$ H should be clearly understood \Rightarrow an independent and complementary approach

0.8

0.6

1.2

LAB MOMENTUM p_K- (GeV/c)

1.0

 produce the ground state of ³_AH(1/2⁺)
 provide important data on the hypertriton lifetime puzzle

22 11

2.0

1.8

1.6

2021/09/

1.4

ストレンジネス核物理の将来を考える研究会

ns

HI exp. vs direct measurement

J-PARC E73 experiment with (K⁻, π^0) reaction

Previous Experiment using (K⁻, π^0) reaction

Neutral Meson Spectroscopy @BNL (1997)
 >Reaction: ¹²C(stop K⁻, π⁰)¹²ΛB
 >Measured π⁰ energy

Bad resolution

J-PARC E73: Experimental principle ^γ³He(K⁻, π⁰)³, H reaction

(1)tag (K⁻, π⁰) reaction by detecting forward single high-energy gamma with calorimeter →almost 100% detection efficiency for forward going π⁰ (0< $θ_{lab}^{π^0}$ <10) ⇒tag Λ production with low recoil momentum Reduce BG from Y decays and multi pion production

J-PARC E73 experiment √³He(K⁻, π⁰)³,H reaction

②Measure Momentum and Timing with Cylindrical Detector System (CDS) select the mono-momentum of π- after 2-body decay low recoil momentum (~100 MeV/c)
 →Hypertriton stops immediately inside the target
 ⇒2-body decay "almost" at rest

Identify ${}^{3}_{\Lambda}H$ and derive lifetime from decay time

PbF₂ calorimeter

Experiment used PbF2: MAMI A4

EPJA: Hadrons and Nuclei volume 18, p.159–161(2003)

Basic information

✓ Identification of hadrons and e, γ ストレンジネス核物理の将来を考える研究会

PbF₂ calorimeter operation test

Two experiment for operation

Charged Particle Veto Counter

2021/09/2

PbF₂ calorimeter performance

>PbF2 calorimeter is installed into the meson beam line to tag fast π⁰
 >40 segments used

ストレンジネス核物理の将来を考える研究会

Strategy of J-PARC E73

Phase-0

- >Feasibility study of new method with the (K-, π^0) reaction using ⁴He target
- ⇒expected to be relatively easy to generate and identify ⁴_∧H
 > Data taking in June 2020 (3 d)

Phase-1

>Production cross section study for ${}^{3}_{\Lambda}$ H >Data taking in May 2021(4 d)

Phase-2

>Direct lifetime measurement for ${}^{3}_{\Lambda}H$ >planned in JFY2022 (1 month)

Hypernucleus	${}^{4}\Lambda$ H	${}^{3}\Lambda H$
Branching ratio to 2-body decay	50 %	25 %
Relative cross section	1	0.3-0.4
Relative yield	1	0.15-0.2

calculation of cross section by Prof. Harada

T. Harada and Y. Hirabayashi Nuclear Physics A 1015 (2021) 122301

J-PARC K1.8BR Beamline

Phasae-0: Feasibility study

Successfully established new method of (K-, pi0) reaction

Analysis for timing

• Calibration with $\pi^- N \rightarrow \pi^- N$ scattering $(t_{beam} + t_{\pi^-})$ >TOF(T0-CDH)

✓Select beam pion and scattering pion✓Adjusted Time offset

Phasae-0: timing spectrum of ${}^{4}_{\Lambda}$ H data

ストレンジネス核物理の将来を考える研究会

Phase-1: pi- momentum dis. of ${}^{3}_{\Lambda}H$

Phase-1: ³_AH 3-body decay

Phase-1: cross section ratio ${}^{3}_{\Lambda}H/{}^{4}_{\Lambda}H$

Rough estimation

 $R = \sigma_{lab}({}^{3}_{\Lambda}H)/\sigma_{lab}({}^{4}_{\Lambda}H)$

	Hypernucleus	${}^{4}\Lambda$ H	³ ∧H	
	Relative cross section	R = 0		
Expected	Branching ratio to 2-body decay	50 %	25 %	
	Relative yield	1	0.15-0.2	
Measured	Luminosity	6.05 G Kaon × 0.145 g/cm ³ /4	11.32 G Kaon × 0.070 g/cm ³ /3	\rightarrow 1 : 1.2 almost same
	# of signal	~1200(<mark>1</mark>)	~200(<mark>0.167</mark>)	
	Relative cross section	R ~ 0.334		

 $R \sim 0.3-0.4$ @ $B_{\Lambda}=0.13$ MeV(Emulsion), ~ 0.65 @ $B_{\Lambda}=0.41$ MeV(STAR)

T. Harada and Y. Hirabayashi, Nuclear Physics A 1015 (2021) 122301

ストレンジネス核物理の将来を考える研究会

Summary

J-PARC E73: Direct measurement of ³_AH lifetime
 Different experimental method from heavy ion-based experiment
 Selectively produce ground state of ³_AH(1/2⁺)

• Current status of the experiment > Phase-0: established a method by (K⁻, π^0) reaction $\Rightarrow {}^4_{\Lambda}$ H lifetime

```
>Phase-1: confirmed {}^{3}_{\Lambda}H production
⇒cross section of {}^{3}_{\Lambda}H
```

```
>Phase-2: {}^{3}_{\Lambda}H lifetime measurement
~ 1 month beam time, {}^{3}_{\Lambda}H ~1000 events, ~10 % error
→ in JFY2022
```


J-PARC E73 collaboration

T. Akaishi¹, H. Asano¹⁰, X. Chen⁴, A. Clozza⁶, C. Curceanu⁶, R. Del Grande⁶, C. Guaraldo⁶, C. Han^{4,10}, T. Hashimoto³, M. Iliescu⁶, K. Inoue¹, S. Ishimoto², K. Itahashi¹⁰, M. Iwasaki¹⁰, Y. Ma¹⁰, M. Miliucci⁶, H. Noumi¹, H. Ohnishi⁹, S. Okada¹⁰, H. Outa¹⁰, K. Piscicchia^{6,8}, F. Sakuma¹⁰, M. Sato², A. Scordo⁶, D. Sirghi^{6,7}, F. Sirghi^{6,7}, K. Shirotori¹, S. Suzuki², K. Tanida³, T. Yamaga¹⁰, X. Yuan⁴, P. Zhang⁴, Y. Zhang⁴, H. Zhang⁵

¹Osaka University, Osaka, 560-0043, Japan ²High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan ³Japan Atomic Energy Agency, Ibaraki 319-1195, Japan ⁴Institute of Modern Physics, Gansu 730000, China ⁵School of Nuclear Science and Technology, Lanzhou University, Gansu 730000, China ⁶Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy ⁷Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Magurele, Romania ⁸CENTRO FERMI - Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", 00184 Rome, Italy ⁹Tohoku University, Miyagi, 982-0826, Japan ¹⁰RIKEN, Wako, 351-0198, Japan

Backup

Beam Momentum selection

2021/09/22

Background events from Kaon in-flight decay

For setup like SKS dipole magnet spectrometer, there are severe BG from K- inflight decay.

But in our case, a conjunction measurement of both pi- and pi0, the kaon decay backgrounds can be suppressed by using the pi- decay angle and decay vertex.

CDC acceptance vs Kaon decay background

Most of the 1.0 GeV/c K- beam in-flight decay background is out of the acceptance of CDS spectrometer.

	Reaction(decay) and final states	Charged particle timing structure	Branching ra- tio	σ [mb/Sr] for $p_{K}=0.9$ GeV/c and $\theta_{\pi^0}=0$	
	$ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	delayed π^-	?%	?%	
	$\begin{bmatrix} \pi & n & -\gamma & \gamma \\ \pi^0 p & n & n_s \rightarrow 2\gamma p & n & n \end{bmatrix}$	delayed p	?%	?%	
out of	$\int \pi^0 \mu^- \bar{\nu}_\mu \to 2\gamma \mu^- \bar{\nu}_\mu$	prompt μ^-	3.32%		
oi0⊕pi-	$\mathbf{K}^- \rightarrow \left\{ \begin{array}{c} \pi^0 \pi^- \rightarrow 2\gamma \pi^- \end{array} \right\}$	prompt π^-	20.92%	Not included	
	$\pi^0\pi^0\pi^- \rightarrow 4\gamma\pi^-$	prompt π^-	1.76%		
ceptance	$\pi^0 \pi^0 n \rightarrow 4\gamma n$	N. A.	35.8%		
	$\pi^0 \pi^- p \to 2\gamma \pi^- p$	delayed π^- , p	63.9%	4.5	
	$\pi^0 \gamma \pi^0 n \to 5\gamma n$	N. A.	35.8%		
	$ \begin{array}{c} \mathbf{x} \mathbf{p} \rightarrow \pi^- \mathcal{L}^- \rightarrow \mathbf{y}^- \gamma \mathbf{A} \rightarrow \\ \pi^0 \gamma \pi^- \mathbf{p} \rightarrow 3\gamma \pi^- \mathbf{p} \end{array} $	delayed π^- , p	63.9%	0.36 (scaled)	
	$K^{-} p \rightarrow 2\gamma \pi^{-} p$	prompt π^- , delayed p	51.57%	0.9	
	$ \begin{array}{c} \mathbf{K} \mathbf{p} \rightarrow \pi \mathcal{L}^{*} \rightarrow \\ \pi^{-} \pi^{+} \mathbf{n} \end{array} $	Ν. Α.	48.31%		
	$K^- p \rightarrow \pi^+ \Sigma^- \rightarrow \pi^+ \pi^- n$	N. A.	100%	Not included	
	$\int \pi^- \pi^0 \mathbf{n} \to 2\gamma \pi^- \mathbf{n}$	prompt π^-	35.8%		
	$\begin{bmatrix} \mathbf{N} & \mathbf{n} \to \pi & \Lambda \to \mathbf{i} \\ \pi^- & \pi^- & \mathbf{p} \to 2\pi^- & \mathbf{p} \end{bmatrix}$	N. A.	63.9%	Not included	
	$\pi^- \gamma \pi^0 n \to 3\gamma \pi^- n$	prompt π^-	35.8%		
	$ \begin{bmatrix} \mathbf{K} & \mathbf{n} \to \pi & 2^{\vee} \to \pi & \gamma \mathbf{A} \to \\ \mathbf{\pi}^- \gamma \pi^- \mathbf{p} \to \gamma 2\pi^- \mathbf{p} \end{bmatrix} $	N. A.	63.9%	Not included	
	$\mathbf{K}^- \mathbf{n} \to \pi^0 \Sigma^- \to \pi^0 \pi^- \mathbf{n} \to 2\gamma \pi^- \mathbf{n}$	delayed π^-	100%	0.9 (scaled)	

Table 4: Survey for $K^- + {}^{3}He \rightarrow \text{forward } \pi^0 + \text{delayed } \pi^-$.

27

Tagging single γ -ray

Simulation: π⁰ uniformly 0~1 GeV/c, 0~180 deg Forward calorimeter energy select >0.6 GeV gamma

✓ forward high-energy π^0 can be selected by detecting 1 gamma

CDS performance

✓Well working

Phase-1: ³_AH 3-body decay

Why be seen peak structure of 3-body decay

>Qualitative

✓³_∧H 3-body decay

✓ large separation between $\Lambda \& d \rightarrow$ fermi motion of Λ is small

Small effect to pion momentum

≻Theorical

✓H. Kamada, et al.,Phys. Rev. C57, 1595 (1998)

need to be careful when estimating the # of events

