Experimental status toward the direct lifetime measurement of Hypertriton using the (K⁻, π^0) reaction at J-PARC

Osaka University T. Akaishi For the J-PARC E73 collaboration

Outline

Introduction Hypertriton lifetime Motivation of J-PARC E73 experiment

J-PARC E73 experiment

- >Experimental principle
- Experimental Setup
- Strategy of direct lifetime measurement
- >timing spectrum of ${}^4_{\Lambda}H$ data
- $>^{3}_{\Lambda}H$ production result

Summary

Introduction

Hypertriton (³∧H): Lightest hypernucleus with p, n and ∧
 >Benchmark for hypernuclear physics

Small binding energy by emulsion data was generally accepted.

 $B_{\wedge} = 130 \pm 50 \text{ keV}$

✓Small B_Λ → large separation between Λ & d → lifetime τ ~ free Λ (263 ps) is expected

Introduction

Hypertriton lifetime puzzle

Exp.	Lifetime
HypHI(2013)	$183^{+42}_{-32} \pm 37 \text{ ps}$
ALICE(2016)	181 ⁺⁵⁴ ± 33 ps
STAR(2018)	$142^{+24}_{-21} \pm 29 \text{ ps}$

✓ Still large uncertainty Signal counts are small Bad S/N

>Short lifetimes from heavy-ion based experiments in 2010's

✓ B_Λ=130 KeV, lifetime close to free Λ ⇔ heavy ion result: short lifetime PANIC 2021 2021/09/05

Introduction

Hypertriton lifetime puzzle

Exp.	Lifetime
ALICE(2019)	$242_{-38}^{+34} \pm 17 \text{ ps}$
ALICE(2020)	254 <u>+</u> 15 <u>+</u> 17 ps
STAR(2021)	232 ± 29.2 ± 36.7 ps

✓Better data quality More Signal better S/N

 \Rightarrow Lifetime compatible with free Λ

ALI-PREL-333625

Is the Hypertriton lifetime puzzle solved? There's something that's not clear(Binding energy, spin)

Toward solving hypertriton lifetime puzzle

• the detail of the ${}^3_{\Lambda}$ H should be clearly understood \Rightarrow an independent and complementary approach

0.8

1.0

1.2

LAB MOMENTUM p_{K⁻} (GeV/c)

1.4

0.6

>provide important data on the hypertriton lifetime puzzle

2.0

1.8

1.6

HI exp. vs direct measurement

Experiments on Hypertriton

Heavy ion-based experiments

STAR

►ALICE

≻GSI (WASA-FRS experiment)

Counter experiments for lifetime
>ELPH: (γ, K⁺)
>J-PARC P74: (π⁻, K⁰)
>J-PARC E73: (K⁻, π⁰) ← Our project

Binding energy measurement
MAMI (e, e'K) decay pion spectroscopy
JLab (e, e'K)
J-PARC E07: Emulsion full scan

J-PARC E73 experiment

PANIC 2021

J-PARC E73 experiment

Experimental principle

 \checkmark ³He(K⁻, π ⁰)³∧H reaction

(1)tag (K⁻, π^0) reaction detect forward high-energy gamma with calorimeter →high momentum pi0

 \Rightarrow tag Λ production with low recoil momentum Reduce BG due to decay of Λ and Σ, multi pion production

J-PARC E73 experiment

Experimental principle

✓³He(K⁻, π^0)³[∧]H reaction

②Measure Momentum and TOF with Cylindrical Detector System (CDS) select the mono-momentum of π - after 2-body decay

Identify ${}^{3}_{\Lambda}H$ and derive lifetime from decay time

PbF₂ calorimeter performance

>PbF2 calorimeter is installed into the meson beam line to tag fast π⁰
 >40 segments used

2019.12: Test experiment @ ELPH e⁺ beam $f = \sqrt{\left(\frac{a_0}{\sqrt{E(GeV)}}\right)^2 + \left(\frac{a_1}{E(GeV)}\right)^2 + b^2}$ 0. o/Ε Energy resolution 0.25 Energy spectrum@1GeV/c π -/e-0.2 Counts/0.004 GeV 10⁵ @J-PARC K1.8BR Energy resolution 0.15 10⁴ ~5 %@1 GeV/c σ/E ~ 5 % 10³ 0. 10² 0.05 10 Well-separated: π , $e(\gamma)$ 0.2 0.4 0.6 0.8 Beam Energy [GeV] -0.2 0.2 0.4 0.6 0.8 0 1.2 Energy [GeV] **Good enough performance PANIC 2021** 2021/09/05

Idea of (K-, π^0) reaction

New method

>Tag the hypernucleus by detecting single gamma ray decaying from π^0 \Rightarrow **need to establish this method by (K-,** π^0 **) reaction**

To effectively populate hypernucleus

Hypernucleus	${}^{4}\Lambda$ H	${}^{3}\Lambda H$
Branching ratio to 2-body decay	50 %	25 %
Relative cross section	R=0.3-0.4	

calculation of cross section by Prof. Harada T. Harada and Y. Hirabayashi, https://arxiv.org/abs/2106.04256v2

$$R = \sigma_{lab}({}^{3}_{\Lambda}H)/\sigma_{lab}({}^{4}_{\Lambda}H)$$

✓ expected to be relatively easy to generate and identify ${}^{4}_{\Lambda}$ H ⇒ confirm by experiments using 4 He targets

Strategy of J-PARC E73

Phase-0

>Feasibility study of the (K-, π^0) reaction on a ⁴He target >Data taking in June 2020

Phase-1

▷ Production cross section study for ${}^{3}_{\Lambda}H$

► Data taking in May 2021

Phase-2

>Direct lifetime measurement for ${}^{3}_{\Lambda}H$ >planned in FY2022

J-PARC K1.8BR Beamline

2021/09/05

Phasae-0: Feasibility study

Phasae-0: pi- momentum dis. of ${}^{4}_{\Lambda}$ H - Successful Production and Identification of Hypernucleus with new Method

Data taking in 3 days beamtime

Phasae-0: timing spectrum of ${}^4_{\Lambda}$ H data

Timing response by π^- scattering statistical error < 10 ps

will be finalized soon

Phasae-1: pi- momentum dis. of ${}^{3}_{\Lambda}H$

2021/09/0

Summary

Hypertriton lifetime Puzzle

> B_{Λ} =130 KeV, lifetime close to free Λ ⇔ heavy ion result: short lifetime

- Direct measurement of ³_AH lifetime (J-PARC E73) is planned
 Different experimental method from heavy ion-based experiment
 Selectively produce ground state of ³_AH(1/2⁺)
- Current status of the experiment
 - ≻Phase-0: established a method by (K⁻, π^0) reaction
 - $\Rightarrow {}^{4}{}_{\Lambda}H$ lifetime
 - >Phase-1: confirmed 3 _∧H production
 - \Rightarrow cross section of ${}^{3}_{\Lambda}H$
 - >Phase-2: ${}^{3}_{\Lambda}H$ lifetime measurement
 - \sim 1 month beam time, ${}^3_\Lambda H$ ${\sim}1000$ events, ${\sim}10$ % error
 - \rightarrow in FY2022

J-PARC E73 collaboration

T. Akaishi¹, H. Asano¹⁰, X. Chen⁴, A. Clozza⁶, C. Curceanu⁶, R. Del Grande⁶, C. Guaraldo⁶, C. Han^{4,10}, T. Hashimoto³, M. Iliescu⁶, K. Inoue¹, S. Ishimoto², K. Itahashi¹⁰, M. Iwasaki¹⁰, Y. Ma¹⁰, M. Miliucci⁶, H. Noumi¹, H. Ohnishi⁹, S. Okada¹⁰, H. Outa¹⁰, K. Piscicchia^{6,8}, F. Sakuma¹⁰, M. Sato², A. Scordo⁶, D. Sirghi^{6,7}, F. Sirghi^{6,7}, K. Shirotori¹, S. Suzuki², K. Tanida³, T. Yamaga¹⁰, X. Yuan⁴, P. Zhang⁴, Y. Zhang⁴, H. Zhang⁵

 ¹Osaka University, Osaka, 560-0043, Japan
 ²High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan
 ³Japan Atomic Energy Agency, Ibaraki 319-1195, Japan
 ⁴Institute of Modern Physics, Gansu 730000, China
 ⁵School of Nuclear Science and Technology, Lanzhou University, Gansu 730000, China
 ⁶Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy
 ⁷Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Magurele, Romania
 ⁸CENTRO FERMI - Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", 00184 Rome, Italy
 ⁹Tohoku University, Miyagi, 982-0826, Japan

2021/09

Backup

PANIC 2021

Introduction: heavy ion results

ALICE as an example for the experimental approach.

$$\tau = 240^{+40}_{-31}$$
(stat.) ± 18 (syst.)

Depends on tracking results for decay length and momentum as $t = L/\beta\gamma c$

ALICE collaboration, PLB, 797 (2019) 134905

2021/09/0

Tagging single γ -ray

Simulation: π⁰ uniformly 0~1 GeV/c, 0~180 deg Forward calorimeter energy select >0.6 GeV gamma

PANIC 2021

CDS performance

✓ Well working

2021/09/05

PANIC 2021

PbF₂ calorimeter

Experiment used PbF2: MAMI A4

EPJA: Hadrons and Nuclei volume 18, p.159–161(2003)

2021/09/0

Basic information

 \checkmark Identification of hadrons and e, γ PANIC 2021