³ H/⁴ H Production cross section の比較によるハイパートライトンの 束縛エネルギーの研究 (J-PARC E73: ハイパートライトン直接寿命測定)

Osaka University T. Akaishi For the J-PARC E73 collaboration

Outline

- Introduction
 - Hypertriton
 - Motivation of J-PARC E73 experiment
 - >Information of binding energy from production cross section

J-PARC E73 experiment

- Experimental principle
- ▷ Pion momentum distribution of ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H
- ≻Ratio of production cross section

Summary

Introduction

Hypertriton (³∧H): Lightest hypernucleus with p, n and ∧
 >Benchmark for hypernuclear physics

Small binding energy by emulsion data has been generally accepted.

 $B_{\wedge} = 130 \pm 50 \text{ keV}$

✓Small B_Λ → large separation between Λ & d → lifetime τ ~ free Λ is naively expected

Hypertriton lifetime

Exp.	Lifetime				
HypHI(2013)	$183^{+42}_{-32} \pm 37 \text{ ps}$				
ALICE(2016)	181 ⁺⁵⁴ ± 33 ps				
STAR(2018)	142 ⁺²⁴ ₋₂₁ ± 29 ps				
Free Λ(263 ps)					

>Short lifetimes from heavy ion experiments in 2010's

2022/03/23

Hypertriton lifetime

Francesco Mazzaschi THEIA-STRONG 2020 ALICE Preliminary result

Exp.	Lifetime		
ALICE(2020)	254 <u>+</u> 15 <u>+</u> 17 ps		
STAR(2021)	221 ± 15 ± 19 ps		
	STAR arXiv:2110.09513		
Comparable with Free Λ			

>updated result was reported recently

Binding energy

Toward solving hypertriton lifetime puzzle

- an independent experimental approach is needed
 - \Rightarrow Measurement using strangeness exchange reaction (J-PARC E73)

0.8

1.0

1.2

LAB MOMENTUM p_K- (GeV/c)

1.6

1.4

1.8

0.6

 produce the ground state of ³_AH(1/2⁺)
 provide important data on the hypertriton lifetime puzzle

2.0

Ratio of production cross section

Theoritical calculaction(DWIA)

T. Harada and Y. Hirabayashi, Nuclear Physics A 1015 (2021) 122301

 $R \sim 0.3-0.4$ @ $B_{\Lambda}=0.13$ MeV(Emulsion), ~ 0.65 @ $B_{\Lambda}=0.41$ MeV(STAR)

 \rightarrow provides a better understanding of the structure of the $_{\Lambda}^{3}H$ bound states

2022/03/2

J-PARC E73 experiment with (K⁻, π^0) reaction

J-PARC E73: Experimental principle ^γ³He(K⁻, π⁰)³, H reaction

(1)tag (K⁻, π⁰) reaction by detecting forward single high-energy gamma with calorimeter →almost 100% detection efficiency for forward going π⁰ (0< $θ_{lab}^{π_0}$ <10) ⇒tag Λ production with low recoil momentum Reduce BG from Y decays and multi pion production

J-PARC E73: Experimental principle ^γ³He(K⁻, π⁰)³, H reaction

②Measure Momentum and Timing with Cylindrical Detector System (CDS) select the mono-momentum of π- after 2-body decay low recoil momentum (~100 MeV/c)
 →Hypertriton stops immediately inside the target
 ⇒2-body decay "almost" at rest

Identify ³_AH and derive lifetime from decay timing

2022/03/2

Current status of J-PARC E73

Phase-0

- > Feasibility study of new method with the (K-, π^0) reaction using ⁴He target
- ⇒expected to be relatively easy to generate and identify ⁴_∧H
 > Data taking in June 2020 (3 d)

Phase-1

>Production cross section study for ${}^{3}_{\Lambda}H$ >Data taking in May 2021(4 d)

Phase-2

>Direct lifetime measurement for ${}^{3}_{\Lambda}$ H >planned in JFY2023 (1 month)

Hypernucleus	${}^{4}{}_{\Lambda}H$	${}^3\Lambda H$
B.R. (2-body)	50 %	25 %
Relative σ	1	0.3-0.4
Relative yield	1	0.15-0.2

calculation of cross section by Prof. Harada

T. Harada and Y. Hirabayashi Nuclear Physics A 1015 (2021) 122301

Current status of J-PARC E73

Phase-0

- > Feasibility study of new method with the (K-, π^0) reaction using ⁴He target
- ⇒expected to be relatively easy to generate and identify ⁴∧H
 >Data taking in June 2020 (3 d)

Phase-1

> Production cross section study for $^{3}_{\Lambda}$ H > Data taking in May 2021(4 d)

Hypernucleus	${}^{4}{}_{\Lambda}H$	${}^3\Lambda H$	
B.R. (2-body)	50 % 25 %		
Relative σ	1	0.3-0.4	
Relative yield	1	0.15-0.2	

calculation of cross section by Prof. Harada

T. Harada and Y. Hirabayashi Nuclear Physics A 1015 (2021) 122301

We have ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H production data

Background at 4He target

Monte Carlo simulation

- >the N(K−,π0)Y elementary cross section
- w/ the Fermi motion inside 4He nucleus
 - R. B. Wiringa et al.,
 - Phys. Rev. C 89, 024305, (2014)13
- \rightarrow can reproduce the data well

pi- momentum dis. of ${}^3_{\Lambda}$ H

2022/03/

³_AH 3-body decay

2022/03/23

 3 _AH 3-body decay

Why be seen peak structure of 3-body decay

>Qualitative

✓³_∧H 3-body decay

✓large separation between $\Lambda \& d \rightarrow$ fermi motion of Λ is small

Small effect to pion momentum

≻Theorical

✓H. Kamada, et al.,Phys. Rev. C57, 1595 (1998)

need to be careful when estimating the # of events

cross section ratio ${}^3_{\Lambda}H/{}^4_{\Lambda}H$

Rough estimation

	Hypernucleus	${}^{4}\Lambda$ H	³ ∧H	$^{3}{}_{\Lambda}\text{H}/^{4}{}_{\Lambda}\text{H}$	
	# of Beam	5.04 G Kaon	8.84 G Kaon	1.75	Luminosity
Measured	# of target	0.145 g/cm ³ /4	0.070 g/cm ³ /3	0.64	\rightarrow 1 : 1.13 almost same
	# of signal	~1200	~200	0.15	
	Relative o	1	0.3	R=0.3	

$$R = \sigma_{lab}({}^{3}_{\Lambda}H)/\sigma_{lab}({}^{4}_{\Lambda}H)$$

R ~ 0.3—0.4 @ B_{{A}=0.13 MeV(Emulsion), ~ 0.65 @ B_{{A}=0.41 MeV(STAR)

T. Harada and Y. Hirabayashi, Nuclear Physics A 1015 (2021) 122301

\rightarrow Binding energy does not seem to be large up to 0.41 MeV

Summary

J-PARC E73: Direct measurement of ³_AH lifetime
 Different experimental method from heavy ion-based experiment
 Selectively produce ground state of ³_AH(1/2⁺)

- Information of binding energy from production cross section >R ~ 0.3-0.4 @ B_{Λ} =0.13 MeV(Emulsion), ~ 0.65 @ B_{Λ} =0.41 MeV(STAR) (theoretical calculation)
 - >We have ${}^{3}_{\Lambda}H$ and ${}^{4}_{\Lambda}H$ production data
 - ✓Ratio rough estimation: R~0.3
 - \rightarrow Binding energy does not seem to be large up to 0.41 MeV
 - I will get the details of the value and error as soon as possible.

J-PARC E73 collaboration

T. Akaishi¹, H. Asano², X. Chen⁵, A. Clozza⁷, C. Curceanu⁷, R. Del Grande⁷, C. Guaraldo⁷, C. Han⁵,
T. Hashimoto⁴, M. Iliescu⁷, K. Inoue¹, S. Ishimoto³, K. Itahashi², M. Iwasaki², Y. Ma², M. Miliucci⁷,
R. Murayama², H. Noumi¹, H. Ohnishi¹⁰ S. Okada², H. Outa², K. Piscicchia^{7,9}, A. Sakaguchi¹, F. Sakuma², M. Sato³, A. Scordo⁷, K. Shirotori¹, D. Sirghi^{7,8}, F. Sirghi^{7,8}, S. Suzuki³ K. Tanida⁴, T. Toda¹, M. Tokuda¹, T. Yamaga², X. Yuan⁵, P. Zhang⁵, Y. Zhang⁵, H. Zhang⁶

¹Osaka University, Toyonaka, 560-0043, Japan ²RIKEN, Wako, 351-0198, Japan

³High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan

⁴Japan Atomic Energy Agency, Ibaraki 319-1195, Japan

⁵Institute of Modern Physics, Gansu 730000, China

⁶School of Nuclear Science and Technology, Lanzhou University, Gansu 730000, China

⁷Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy

⁸Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Magurele, Romania ⁹CENTRO FERMI - Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, 00184 Rome,

> Italy ¹⁰Tohoku University, 982-0826, Sendai, Japan

Backup

Experiments on Hypertriton

Heavy ion-based experiments
 STAR
 ALICE

≻GSI (WASA-FRS experiment)

Counter experiments for lifetime
 >ELPH, Tohoku-U, Japan: (γ, K⁺)
 >J-PARC P74: (π⁻, K⁰)
 >J-PARC E73: (K⁻, π⁰) ← Our project

Hypertriton still motivates activates studies

Binding energy measurement
MAMI (e, e'K) decay pion spectroscopy
JLab (e, e'K)
J-PARC E07: Emulsion full scan

Previous Experiment using (K⁻, π^0) reaction

Neutral Meson Spectroscopy @BNL (1997)
 >Reaction: ¹²C(stop K⁻, π⁰)¹² B
 >Measured π⁰ energy

$$\mathbf{V} E_{\pi^0} = E_1 + E_2 = m_{\pi^0} \sqrt{\frac{2}{(1 - \cos \eta)(1 - X^2)}}, \ X = \frac{E_1 - E_2}{E_1 + E_2}$$

n: opening angle

H.W. Baer, et al., Nucl. Inst. Meth. 180(1981)445

Difficult method

Experiment concept

Beam Momentum selection

Elementary cross section

Background events from Kaon in-flight decay

For setup like SKS dipole magnet spectrometer, there are severe BG from K- inflight decay.

But in our case, a conjunction measurement of both pi- and pi0, the kaon decay backgrounds can be suppressed by using the pi- decay angle and decay vertex.

CDC acceptance vs Kaon decay background

Most of the 1.0 GeV/c K- beam in-flight decay background is out of the acceptance of CDS spectrometer.

Reaction and final states

out of pi0⊕piacceptance

Reaction(decay) and final states		Charged particle timing structure	Branching ra- tio	σ [mb/Sr] for $p_{K^-}=0.9$ GeV/c and $\theta_{\pi^0}=0$		
К- 3На → # ^{0 3} Н	$\int \pi^0 \pi^-$	$^{3}\text{He} \rightarrow 2\gamma \pi^{-3}\text{He}$	delayed π^-	?%	?%	
K He→x VH.		$n n_s \rightarrow 2\gamma p n n$	delayed p	?%	?%	
$\int \pi^0 \mu^- \bar{\nu}_{\mu} -$	$\rightarrow 2\gamma\mu^-\bar{\nu}_\mu$		prompt μ^-	3.32%		
$\mathbf{K}^{-} \rightarrow \left\{ \pi^{0} \pi^{-} \rightarrow 2 \gamma \pi^{-} \right\}$			prompt π^-	20.92%	Not included	
$\pi^0 \pi^0 \pi^- \to 4\gamma \pi^-$		prompt <i>π</i> ⁻	1.76%			
V=0 A	$\pi^0 \pi^0 n$	» 4γ n	N. A.	35.8%		
$K^- p \rightarrow \pi^0 \Lambda \rightarrow$	π ⁰ π ⁻ p -	$\rightarrow 2\gamma \pi^- p$	delayed π^- , p	63.9%	4.5	
$\mathrm{K}^- \mathrm{p} ightarrow \pi^0 \Sigma^0 ightarrow \pi^0$	0 .	$\pi^0 \gamma \pi^0 n \rightarrow 5\gamma n$	N. A.	35.8%		
	$\pi^{-}\gamma \Lambda \rightarrow \{$	$\pi^0 \gamma \pi^- p \rightarrow 3\gamma \pi^- p$	delayed π^- , p	63.9%	0.36 (scaled)	
$\mathbf{K}^{-} \mathbf{p} \to \pi^{-} \Sigma^{+} \to \begin{cases} \pi^{-} \\ \pi^{-} \end{cases}$	$\int \pi^- \pi^0 p$	$\rightarrow 2\gamma \pi^- p$	prompt π^- , delayed p	51.57%		
	$\pi^{-}\pi^{+}n$		N. A.	48.31%	0.9	
$K^- p \rightarrow \pi^+ \Sigma^- \rightarrow \pi^+ \pi^- n$		N. A.	100%	Not included		
$\mathbf{K}^{-} \mathbf{n} \rightarrow \pi^{-} \Lambda \rightarrow \left\{ \right.$	$ \xrightarrow{\rightarrow} \begin{cases} \pi^{-} \pi^{0} \mathbf{n} \rightarrow 2\gamma \pi^{-} \mathbf{n} \\ \pi^{-} \pi^{-} \mathbf{p} \rightarrow 2\pi^{-} \mathbf{p} \end{cases} $		prompt <i>π</i> ⁻	35.8%		
			N. A.	63.9%	Not included	
$K^- n \to \pi^- \Sigma^0 \to \pi$	$\pi^- \gamma \pi^0 n \to 3\gamma \pi^- n$		prompt <i>n</i> -	35.8%		
	π γΛ→	$\pi^- \gamma \pi^- p \rightarrow \gamma 2\pi^- p$	N. A.	63.9%	Not included	
$K^- n \rightarrow \pi^0 \Sigma^- \rightarrow \pi^0 \pi^- n \rightarrow 2\gamma \pi^- n$		delayed π^-	100%	0.9 (scaled)		

Table 4: Survey for $K^- + {}^{3}He \rightarrow$ forward π^0 + delayed π^- .

2022/03/23

Tagging single γ -ray

Simulation: π⁰ uniformly 0~1 GeV/c, 0~180 deg Forward calorimeter energy select >0.6 GeV gamma

✓ forward high-energy π^0 can be selected by detecting 1 gamma

* π⁰ tagger needs to be *located along beam line* * *Fast response, radiation hardness*

CDS performance

J-PARC K1.8BR Beamline

2022/03/23

CDS performance

✓ Well working

PbF2 calorimeter

PbF₂ calorimeter

Experiment used PbF2: MAMI A4

EPJA: Hadrons and Nuclei volume 18, p.159–161(2003)

Basic information

✓Identification of hadrons and e, γ J-PARCハドロン研究会2022

PbF₂ calorimeter operation

Beam test – two pattern
 >40 segments used

PbF₂ calorimeter performance

>PbF2 calorimeter is installed into the meson beam line to tag fast π⁰
 >40 segments used

J-PARCハドロン研究会2022

2022/03/23

J-PARC T77 experiment ${}^{4}_{\Lambda}$ H lifetime

Background subtraction

Feasibility study

Background reduction by PbF2
 Selection of high energy γ-rays for ⁴_ΛH production

 \Rightarrow Improved S/N ratio(3/2 \rightarrow 4/1) Red line

Derive lifetime

Analysis for timing

• Calibration with $\pi^-N \rightarrow \pi^-N$ scattering >TOF(T0-CDH)

 $\checkmark Select$ beam pion and scattering pion

✓Adjusted Time offset

${}^{4}_{\Lambda}$ H lifetime analysis

 194_{-26}^{+24} ps @ KEK stop K-H. Outa, et al., Nucl. Phys. A 547, (1992), 109c-114c $218 \pm 6(\text{stat.}) \pm 13(\text{sys.})$ ps @ STAR, Au-Au collision arXiv:2110.09513

will be finalized soon

2022/03/