B01公募研究

K-ビームを用いた 軽いハイパー核の寿命測定

1. ハイパートライトン研究の現状

2. 我々の実験手法

3. テスト実験/初期データ取得の状況

4. 今後のプランとまとめ

橋本直 (JAEA/ASRC) 2021/6/14

J-PARC E73/T77 collaboration

T. Akaishi¹, H. Asano¹⁰, X. Chen⁴, A. Clozza⁶, C. Curceanu⁶, R. Del Grande⁶, C. Guaraldo⁶, C. Han^{4,10}, T. Hashimoto³, M. Iliescu⁶, K. Inoue¹, S. Ishimoto², K. Itahashi¹⁰, M. Iwasaki¹⁰, Y. Ma¹⁰, M. Miliucci⁶, H. Noumi¹, H. Ohnishi⁹, S. Okada¹⁰, H. Outa¹⁰, K. Piscicchia^{6,8}, F. Sakuma¹⁰, M. Sato², A. Scordo⁶, D. Sirghi^{6,7}, F. Sirghi^{6,7}, K. Shirotori¹, S. Suzuki², K. Tanida³, T. Yamaga¹⁰, X. Yuan⁴, P. Zhang⁴, Y. Zhang⁴, H. Zhang⁵

 ¹Osaka University, Osaka, 560-0043, Japan
 ²High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan
 ³Japan Atomic Energy Agency, Ibaraki 319-1195, Japan
 ⁴Institute of Modern Physics, Gansu 730000, China
 ⁵School of Nuclear Science and Technology, Lanzhou University, Gansu 730000, China
 ⁶Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy
 ⁷Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Magurele, Romania
 ⁸CENTRO FERMI - Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", 00184 Rome, Italy

⁹Tohoku University, Miyagi, 982-0826, Japan ¹⁰RIKEN, Wako, 351-0198, Japan

- Main spokesperson: Y. Ma (RIKEN)
- Ph.D candidate: T. Akaishi (Osaka U.)

Hypertriton

- Lightest hyper nucleus: bench mark for $\Lambda N(\Lambda NN)$ interaction models.
- Important input to determine the ΛN spin-singlet strength
- Small binding energy by emulsion data was generally accepted.
- Small $B_{\Lambda} \rightarrow$ large spacing between Λ & d \rightarrow lifetime should be ~ free Λ (263 ps)
 - for example 256 ps by H. Kamada, et al, Phys. Rev. C Nucl. Phys. 57, 1595 (1998).
- Spin 1/2 determined by the two-body decay ratio R₃ (G. Keyes et al., NPB67, 269, 1973).

Hypertriton lifetime puzzle

Short lifetimes from HI experiments in 2010's

Hypertriton lifetime puzzle

- Data quality is not good. limited counts, bad S/N
- Indirect measurement using decay length.

Recent progress in experiment Yue-Hang Leung (2021). E. Bartsch, et al., Nucl. Phys. A 1005, 121, 191 ALICE, Phys. Lett. B 797, 134905 (2019). Francesco Mazzaschi, THEIA-STRONG **REIMEI-THEIA** Webseminar (2 MeV/c²) 100 MeV/c² AU+AL Counts / (2.25 MeV/c²) 9 8 00 01 ALICE 8000 **ALICE Performance** Pb–Pb $\sqrt{s_{_{\rm NN}}}$ = 5.02 TeV Signal + Background Pb–Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ Events / Signal 0–90%, |*y*| < 0.8 $2 \le ct < 4 \text{ cm}, 0.90 \%$ Counts per 1 ----- Background 6000 data 2015 data 2018 0-50% Centrality 4000 $p_T = (0.4-4.0) [GeV/c]$ 40 y = (-1.0 - 1.0)2000 20 Au-Au 3 GeV 20 4 ≤ *ct* < 7 cm 3.03 2.99 3.02 2.98 3.01 2.98 3.02 3 $M(^{3}\text{He} + \pi)$ (GeV/ c^{2}) 3.02 3.03 3.04 3.01 m_{3нет}-[GeV/c²] ALI-PERF-335127 Invariant mass (${}^{3}\text{He}+\pi^{-}+{}^{3}\overline{\text{He}}+\pi^{+}$) (GeV/ c^{2}) dN/d(*c*t) (cm⁻¹) 10² ALICE 10^{3} ALICE Preliminary $Pb-Pb\sqrt{s_{NN}} = 5.02 \text{ TeV}$ units 0-90%, |y| < 0.8Pb-Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}_{20} 0.90\%$ STAR Au+Au $\sqrt{s_{NN}} = 3 \text{ GeV}$ ${}^{3}_{\Lambda}H + {}^{3}_{\overline{\Lambda}}H$ 15 dN/d(L/βγ)[arb. dN/d(L/By)[arb 10⁴ 10 o_[GeV/c] 102 Data Systematic uncertainty 200 220 240 260 Exponential fit τ**[ps]** 10³ 10 • Data, ³H $c\tau = 7.25^{+1.02}_{-1.13}$ (stat.) ± 0.51 (syst.) (cm) Exponential fit 10^{2} 20 30 20 25 ct (cm) ct (cr ALI-PREL-334667 STAR PRELIMINARY More signals, better S/N (ALICE with ML), . 10 15 20 25 30 35 40 45 50 D **L**/βγ[**cm**]

H. Le, J. Haidenbauer, et al, Phys. Lett. B 801, 135189 (2020).

8

- STAR 0.41(12)(11) MeV > Emulsion 0.13(5) MeV
- Need high precision data

(Part of) Recent progress in theory

- Pion FSI enhance the decay rate 10~20%
 A. Gal, et al, Phys. Lett. B 791, 48 (2019).
- Σ admixtures reduce the decay rate ~10%
 Strong dependence on B_Λ
 A. Pérez-Obiol, et al, Phys. Lett. B 811, 135916 (2020).
- Branching ratio depends on B∧
 F. Hildenbrand et al., Phys. Rev. C102, 064002 (2020).
- etc…

$\Lambda_{\rm UV}$ (MeV)	B_{Λ} (keV)	$\Gamma_{\Lambda}^{3}H \rightarrow {}^{3}He + \pi^{-}$ (GHz)	$ au(^3_{\Lambda}H)$ (ps)	
800	69	0.975	234 ± 27	(
900	135	1.197	190 ± 22	(I
1000	159	1.265	180 ± 21	
_	410	1.403	163 ± 18	Гз

A. Pérez-Obiol, et al, Phys. Lett. B 811, 135916 (2020).

F. Hildenbrand, et al., Phys. Rev. C102, 064002 (2020).

Observable	$B_{\Lambda} = 0.13 \text{ MeV}$		$B_{\Lambda} = 0.41 \text{ MeV}$	
α_{-}	0.642	0.732	0.642	0.732
$\left(\Gamma_{pd}+\Gamma_{nd}\right)/\Gamma_{\Lambda}$	0.612	0.612	0.415	0.416
$\left(\Gamma_{^{3}\mathrm{He}}+\Gamma_{^{3}\mathrm{H}}\right)/\Gamma_{\Lambda}$	0.382	0.363	0.569	0.541
$\Gamma_{^3\Lambda H}/\Gamma_{\Lambda}$	0.992	0.975	0.984	0.956
$\Gamma_{^{3}\mathrm{He}}/\left(\Gamma_{^{3}\mathrm{He}}+\Gamma_{pd}\right)$	0.384	0.373	0.578	0.566
$ au_{{}_{\Lambda}}{}_{ m H}[{ m ps}]$	264.7	269.8	267.6	275.0

Planned experiments

- Heavy ion collision
 - ALICE Run 3(2021~2024), Run 4 (2027~2030)
 - ~50 times yield expected
 - GSI (2022?)
 - FRS+WASA
- Binding energy measurement
 - MAMI (e, e'K) decay pion spectroscopy
 - JLab (e, e'K) C12-19-002
 - J-PARC E07: Emulsion full scan
- Counter experiments for lifetime
 - ELPH: (γ, K+)
 - J-PARC P74: (π -, K⁰) at K1.1
 - J-PARC E73: (K-, π^{0}) at K1.8BR

Our approach

Hypertriton寿命测定(J-PARC E73/T77)

- detect forward high-energy gamma to tag (K-, π^{0}) reactions
- 4 AH measurement as feasibility demonstration (T77)

Forward gamma tag

Simulation

Generate: π^{0} uniformly 0~1 GeV/c, 0~180 deg Accept: >0.6 GeV/c gamma in the calorimeter

• forward high-energy π^0 can be selected by detecting 1 gamma

- low-energy π^0 from hyperon decays can be removed.

13

Momentum selection

At higher momentum

- Slight increase of recoil momentum
- Higher kaon yield
- Lower elementary CS
- 1.0 GeV/c (or 0.9 GeV/c)

Spin non-flip nature of the reaction

Spin-nonflip reaction is dominant at 1.0 GeV/c or lower

• Selectively produce ground states $^{4}\Lambda$ H(0+), $^{3}\Lambda$ H(1/2+)

Cross section ratio $R = \sigma_{\text{lab}} (^{3}_{\Lambda}\text{H}) / \sigma_{\text{lab}} (^{4}_{\Lambda}\text{H}).$

- Harada-san predict T. Harada and Y. Hirabayashi, http://arxiv.org/abs/2106.04256.
 - R=0.3~0.4 for B_{Λ} =0.13, R = 0.65 for B_{Λ} =0.41
- Hint for 3/2+ state combining J-Lab data (spin-flip favored)

橋本直@第6回クラスター階層領域研究会

16

Experiment

E15/E31@K1.8BR

beam dump

beam sweeping magnet

liquid ³He target system

CDS

neutron counter charge veto counter proton counter

bèam line spectrometer

E15/E31@K1.8BR

liquid ³He target system

CDS

beam line spectrometer

uninstal

~ 2 x 10⁵ K- /spill (~70% on target)
 @ 50 kW, -1.0 GeV/c

- K/pi ~ 0.4
- ~50 kW @ T77, 2020.6
- ~60 kW @ E731st, 2021.5

PbF2 calorimeter

D.F. Anderson, *et al.*, Nucl. Inst. Meth. A290 (1990) 385 P. Achenbach, *et al.*, Nucl. Inst. Meth. A416 (1998) 357

PbF2 calorimeter performance

good enough performance to tag high-energy gamma

Cylindrical detecter system

Particle ID

Single track resolution

- Well established system. used in E15(K-pp)/E31(L1405)
- Best resolution at around 0.1 ~ 0.15 GeV/c

無冷媒液体ヘリウム標的システム

✓ 液体N₂/Heを用いたE15システム→パルスチューブ冷凍機を用いた無冷媒システムへ
 ✓ 到達温度 2.5~2.7K, 冷却開始から<48時間で³He液化可能
 ✓ T77/ E73 1stで実際に運用に成功

24

⁴He data: Pion momentum spectrum

- H4L peak was clearly observed with expected background from quasi-free Y.
- x2 peak count, x10 S/N compared with the KEK experiment

25

⁴He data: Timing spectrum

- Detector timing response is well understood by π -scat. data.
- Need more study for the background subtraction.

³He data

60 kW ~4 days beam @May, 2021

Very preliminary

- Successfully observed the peak from 2 body decays.
- First direct confirmation of spin 1/2

- 3-body decays are also observed. could be used for the life time evaluation
- We need careful study of the background shape

Plan for 2 years

- 2020.6: Feasibility demonstration with Helium-4 done
- 2021.5/6: Cross section measurement with Helium-3 done
 - Analysis (Ph.D thesis for T. Akaishi)
 - (necessary modifications of the setup (not all):
 - beam-line trigger counter
 - PbF2 readout
 - vertex fiber tracker
 - target radiation shield
 - etc…)
- 2022.10 or later (after long shutdown):
 - Lifetime measurement of ${}^3{}_{\Lambda}H$ (> 1000 events)

Summary

- Hypertriton provides a benchmark for hypernuclear physics.
- We have explored a new method to investigate the neutronrich hypernuclei by K- beam & gamma-ray tagging
- We will provide unique information
 - Cross section (x Branching ratio) of ${}^{4}{}^{}$ H, ${}^{3}{}^{}$ H in (K-, π ⁰)
 - Lifetime with highest precision and different systematics ${}^{4}{}_{\Lambda}$ H : < 10 (stat.), < 10 (syst.) ps ${}^{3}{}_{\Lambda}$ H : ~20 (stat.), < 20 (syst.) ps
 - (two-body decay ratio)