J-PARC P73:

${}^{3}_{\Lambda}$ H mesonic weak decay lifetime

measurement with ${}^{3}\text{He}(K^{-}, \pi^{0}){}^{3}_{\Lambda}\text{H}$ reaction

Submitted for pilot run with ⁴He (K⁻, π^0)⁴_AH reaction @ 1GeV/c, 50kW*1week

y.ma@riken.jp

2020/01/16

Outline

- Introduction to J-PARC P73
- P73 proposal status
- Preparation for pilot run (J-PARC P77)
- Summary

Introduction: motivation

As the lightest hypernucleus, ³_AH should tell us some important fact of YN interactions just as deuteron for nuclear physics.

Up to a few years ago, we believe: $\tau \approx 263 \text{ ps} (B_{\Lambda} = 130 \pm 50 \text{ keV}).$

decay probability: kinematics× | transition matrix |² ~ phase space×wave function overlap a small term (separation of ~10fm)

A well separated wave function between Λ and deuteron implies small modification of ${}^{3}_{\Lambda}$ H lifetime from deuteron and, thus, its lifetime should be presumably determined by free Λ decay.

Introduction: motivation

As the lightest hypernucleus, ${}^{3}_{\Lambda}$ H should tell us some important fact of YN interactions just as deuteron for nuclear physics.

Hypertriton lifetime puzzle challenges the very foundation of our knowledge for hypernucleus.

Collaboration	Experimental method	$^{3}_{\Lambda}$ H lifetime [ps]	Release date
ALICE	Pb collider	240^{+40}_{-31} (stat.)±18(syst.)	2019
STAR	Au collider	$142^{+24}_{-21}(\text{stat.})\pm 29(\text{syst.})$	2018
HypHI	fixed target	183^{+42}_{-32} (stat.)±37(syst.)	2013

Up to a few years ago, we believe: $\tau \approx 263 \text{ ps} (B_{\Lambda} = 130 \pm 50 \text{ keV});$ However, heavy ion experiments suggest $\tau \approx 180 \text{ ps...}$

Neither fish nor fowl?

Picture taken from MM. Block et al. Proc. Int. Conf. Hyperfragments, 1963

Introduction: heavy ion results

ALICE as an example for the experimental approach.

 $\tau = 240^{+40}_{-31}$ (stat.) ± 18 (syst.)

Depends on tracking results for decay length and momentum as $t = L/\beta\gamma c$

ALICE collaboration, PLB, 797 (2019) 134905

Experimental setup

The idea of *direct measurement*: $T_{CDH}-T_0=t_{beam}+t_{\pi}-+\tau$;

- 1. A complementary measurement for Heavy Ion results
- 2. Achievable precision: $\sigma/\sqrt{N} \sim 30$ ps

Experimental setup

The main apparatus to measure decayed pi- momentum is a solenoid spectrometer, Cylindrical Spectrometer System (CDS). Successfully employed for E15 and E31 at K18BR of Hadron Hall.

Performance estimation: yield estimation

Target: liquid 3He, 10cm	1.6×10^{23} / cm ²
K- power @ 1GeV/c	50kW (2×10 ⁵ /5.2s)
σ of ³ $_{\Lambda}$ H g.s.	0.0126 mb
Total yield	1.8×10 ⁵ /4 weeks
Beam acep. & DAQ eff.	50%
$^{3}\Lambda H \rightarrow ^{3}He + \pi - b.r.$	25%
π - & π 0 acceptance	6%
³ _A H signal yield	~1000 events/4 weeks

⁴_ΛH signal yield (same target cell): ~3(cross section)×2(π -branching ratio)×³_ΛH signal yield ==> ~1000 events/1 week

P73 proposal status

- First version submitted to 26th PAC --> more details should be provided based on simulation
- Revised proposal submitted to 27th PAC --> need to clarify systematic error
- Systematic error explained in 28th PAC by F. Sakuma
 --> PAC suggests us to carry out pilot run with He4 target

New proposal(P77) for P73 pilot run

Test beam proposal for the J-PARC P73: Feasibility study for ${}^3_{\Lambda}$ H mesonic weak decay lifetime measurement with 4 He(K⁻, π^0) $^4_{\Lambda}$ H reaction¹

- This talk is part of the efforts for applying pilot run with He4 target:
 J-PARC P77: ⁴He (K⁻, π⁰) ⁴_AH reaction @ 1GeV/c, 50kW*1week
- Motivation for the pilot run and preparation status will be covered in the next slides

Mission for the 4He (K-, π^0) 4_AH pilot run

Expected S/BG Ration with Different Models

Signal yield is assumed to be ~ 1k in all cases (4w, 50kW)

Mission for the 4He (K-, π^0) 4_AH pilot run

Realistic Estimation using ⁴He Data

- Using the signal and BG obtained from K⁻ + ⁴He data, we can do an realistic estimation of the ³_ΛH measurement
 - BG is expected to be almost the same between ³He and ⁴He
 - Signal and BG can be scaled F. Sakuma's talk in 28th PAC

Preparation status: Calorimeter

- Residual field from CDS is suppressed down to ~3 Gauss;
- No noticeable distortion for PMT signal is observed

Preparation status: Calorimeter

- Energy calibration has been successfully carreed out at ELPH, Tohoku Univ. in Dec. 2019;
- Performance is confirmed and ready for data taking

Preparation status: Cryogenic target

Figure 7: Design of the target system for P73.

Target geometry is modified to tolerate the calorimeter;
All components are in hands and will be assembled soon

- Proposal for P73 pilot run is submitted to PAC
- Iweek beam time @50kW with He4 target can help us to pin down the uncertainty in the background yield estimation and also confirm statistical/systematic errors
 - We submitted J-PARC P77 as pilot run of P73 for this purpose
- The whole system will be ready for data taking by the end of this fiscal year (March 2020)

Acknowledgement

- Financial support from Prof. M. Iwasaki
- Support from ELPH staff Prof. T. Ishikawa
- Support from KEK staff S. Ishimoto, S. Suzuki
- Our brilliant collaborators:
 - T. Akaishi, T. Yamaga, T. Hashimoto, F. Sakuma

é

Experimental setup: π^0 tagger (PbF₂)

Crystal	Radiation length	Moliere radius	Density	Cost	Resolution	Signal length
PbF ₂	0.93 cm	2.22 cm	7.77 g/cm ³	12 USD/cc	5%	2ns

D.F. Anderson, *et al.*, Nucl. Inst. Meth. A290 (1990) 385 P. Achenbach, *et al.*, Nucl. Inst. Meth. A416 (1998) 357

Physics Motivation

 Recent heavy-ion experiments reported different lifetime of hyper-triton, ³_ΛH:

STAR (2018)	ALICE (2018)	free Λ
$142^{+24}_{-21} \pm 29 \text{ ps}$	237 ⁺³³ ₋₃₆ ± 17 ps	263 ± 2 ps

τ(³_ΛH)~τ(free Λ) is naively expected, because ³_ΛH is known to be very loosely bound system (~0.13MeV)

3

Heavy-Ion Experiment

Heavy-ion experiment STAR, ALICE, HypHI

- Invariant mass reconstruction
 - Difficult to use ${}^{3}_{\Lambda}$ H information in ct~0cm region
 - Huge combinatorial BG

Background events from Kaon in-flight decay

For setup like SKS dipole magnet spectrometer, there are severe BG from K- inflight decay.

But in our case, a conjunction measurement of both pi- and pi0, the kaon decay backgrounds can be suppressed by using the pi- decay angle and decay vertex.

CDC acceptance vs Kaon decay background

Most of the 1.0 GeV/c K- beam in-flight decay background is out of the acceptance of CDS spectrometer.

Event selection conditions

- dE veto counter <= 0.2 MeV && PbF2 calorimeter >= 600 MeV
- IH == 1 && CDS charged track == 1
- CDS tracking mass $>= 0 \&\& \le 0.3 \text{ GeV}/c^2$
- DCA <= 5mm && fiducial cut

From Monte Carlo information, only hyperon and hypernucleus events survived the event selection --> effective trigger and analysis method

blue: inclusive calo dE W/ veto: K- in-flight decay + ... red: signal calo dE W/ veto

Estimate ³_AH lifetime resolution

- A stand alone lifetime generator based on simulated background shape: --> statistical error ±25ps
- Systematic error is evaluated by assuming the time zero alignment has ~20ps accuracy --> systematic error ±20ps

Time Zero Alignment Estimation with the E15 Data

- E15-2nd data (Run65, ³He(K⁻,π⁻)X)
 - Time zero can be determined within 5 ps
- Error propagated from the time zero alignment is estimated to be <5 ps with MC simulation

Dr. Yamaga, RIKEN